func TestRosenbrock(t *testing.T) { mat.Register(cops) n := 10 scale := 10.0 xInit := mat.RandVec(n).Scal(scale) //Define input arguments obj := opt.Rosenbrock{} p := NewParams() p.FunEvalMax = 100000 p.IterMax = 100000 sol := NewSolution(xInit) //Steepest descent with armijo stDesc := NewSteepestDescent() res1 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res1.ObjX, res1.FunEvals, res1.GradEvals, res1.Status) //Steepest descent with Quadratic stDesc.LineSearch = uni.DerivWrapper{uni.NewQuadratic()} res2 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res2.ObjX, res2.FunEvals, res2.GradEvals, res2.Status) //LBFGS with armijo lbfgs := NewLBFGS() res3 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res3.ObjX, res3.FunEvals, res3.GradEvals, res3.Status) //LBFGS with Quadratic lbfgs.LineSearch = uni.DerivWrapper{uni.NewQuadratic()} res4 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res4.ObjX, res4.FunEvals, res4.GradEvals, res4.Status) //LBFGS with Cubic lbfgs.LineSearch = uni.NewCubic() res5 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res5.ObjX, res5.FunEvals, res5.GradEvals, res5.Status) if math.Abs(res1.ObjX) > 0.01 { t.Fail() } if math.Abs(res2.ObjX) > 0.01 { t.Fail() } if math.Abs(res3.ObjX) > 0.01 { t.Fail() } if math.Abs(res4.ObjX) > 0.01 { t.Fail() } if math.Abs(res5.ObjX) > 0.01 { t.Fail() } }
func TestQuadratic(t *testing.T) { mat.Register(cops) n := 10 xStar := mat.NewVec(n) xStar.AddSc(1) A := mat.RandN(n) At := A.TrView() AtA := mat.New(n) AtA.Mul(At, A) bTmp := mat.NewVec(n) bTmp.Apply(A, xStar) b := mat.NewVec(n) b.Apply(At, bTmp) b.Scal(-2) c := bTmp.Nrm2Sq() //Define input arguments obj := opt.NewQuadratic(AtA, b, c) p := NewParams() sol := NewSolution(mat.NewVec(n)) //Steepest descent with armijo stDesc := NewSteepestDescent() res1 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res1.ObjX, res1.FunEvals, res1.GradEvals, res1.Status) //Steepest descent with Quadratic stDesc.LineSearch = uni.DerivWrapper{uni.NewQuadratic()} res2 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res2.ObjX, res2.FunEvals, res2.GradEvals, res2.Status) //LBFGS with armijo lbfgs := NewLBFGS() res3 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res3.ObjX, res3.FunEvals, res3.GradEvals, res3.Status) //constrained problems (constraints described as projection) projGrad := NewProjGrad() res4 := projGrad.Solve(obj, opt.RealPlus{}, sol, p, NewDisplay(100)) t.Log(res4.ObjX, res4.FunEvals, res4.GradEvals, res4.Status) if math.Abs(res1.ObjX) > 0.01 { t.Fail() } if math.Abs(res2.ObjX) > 0.01 { t.Fail() } if math.Abs(res3.ObjX) > 0.01 { t.Fail() } if math.Abs(res4.ObjX) > 0.01 { t.Fail() } }
func NewRosenbrock() *Rosenbrock { return &Rosenbrock{ LineSearch: uni.NewQuadratic(), } }