Example #1
0
// newManagedAddress returns a new managed address based on the passed account,
// private key, and whether or not the public key is compressed.  The managed
// address will have access to the private and public keys.
func newManagedAddress(m *Manager, account uint32,
	privKey chainec.PrivateKey) (*managedAddress, error) {
	if privKey == nil {
		err := fmt.Errorf("missing private key")
		return nil, managerError(ErrNoExist, "nil pointer", err)
	}

	// Encrypt the private key.
	//
	// NOTE: The privKeyBytes here are set into the managed address which
	// are cleared when locked, so they aren't cleared here.
	privKeyBytes := privKey.Serialize()
	privKeyEncrypted, err := m.cryptoKeyPriv.Encrypt(privKeyBytes)
	if err != nil {
		str := "failed to encrypt private key"
		return nil, managerError(ErrCrypto, str, err)
	}

	// Leverage the code to create a managed address without a private key
	// and then add the private key to it.
	pubx, puby := privKey.Public()
	ecPubKey := chainec.Secp256k1.NewPublicKey(pubx, puby)
	managedAddr, err := newManagedAddressWithoutPrivKey(m, account,
		ecPubKey, true)
	if err != nil {
		return nil, err
	}
	managedAddr.privKeyEncrypted = privKeyEncrypted
	managedAddr.privKeyCT = privKeyBytes

	return managedAddr, nil
}
Example #2
0
// SignatureScript creates an input signature script for tx to spend coins sent
// from a previous output to the owner of privKey. tx must include all
// transaction inputs and outputs, however txin scripts are allowed to be filled
// or empty. The returned script is calculated to be used as the idx'th txin
// sigscript for tx. subscript is the PkScript of the previous output being used
// as the idx'th input. privKey is serialized in either a compressed or
// uncompressed format based on compress. This format must match the same format
// used to generate the payment address, or the script validation will fail.
func SignatureScript(tx *wire.MsgTx, idx int, subscript []byte,
	hashType SigHashType, privKey chainec.PrivateKey, compress bool) ([]byte,
	error) {
	sig, err := RawTxInSignature(tx, idx, subscript, hashType, privKey)
	if err != nil {
		return nil, err
	}

	pubx, puby := privKey.Public()
	pub := chainec.Secp256k1.NewPublicKey(pubx, puby)
	var pkData []byte
	if compress {
		pkData = pub.SerializeCompressed()
	} else {
		pkData = pub.SerializeUncompressed()
	}

	return NewScriptBuilder().AddData(sig).AddData(pkData).Script()
}
Example #3
0
// SignatureScriptAlt creates an input signature script for tx to spend coins sent
// from a previous output to the owner of privKey. tx must include all
// transaction inputs and outputs, however txin scripts are allowed to be filled
// or empty. The returned script is calculated to be used as the idx'th txin
// sigscript for tx. subscript is the PkScript of the previous output being used
// as the idx'th input. privKey is serialized in the respective format for the
// ECDSA type. This format must match the same format used to generate the payment
// address, or the script validation will fail.
func SignatureScriptAlt(tx *wire.MsgTx, idx int, subscript []byte,
	hashType SigHashType, privKey chainec.PrivateKey, compress bool,
	sigType int) ([]byte,
	error) {
	sig, err := RawTxInSignatureAlt(tx, idx, subscript, hashType, privKey,
		sigTypes(sigType))
	if err != nil {
		return nil, err
	}

	pubx, puby := privKey.Public()
	var pub chainec.PublicKey
	switch sigTypes(sigType) {
	case edwards:
		pub = chainec.Edwards.NewPublicKey(pubx, puby)
	case secSchnorr:
		pub = chainec.SecSchnorr.NewPublicKey(pubx, puby)
	}
	pkData := pub.Serialize()

	return NewScriptBuilder().AddData(sig).AddData(pkData).Script()
}