Example #1
1
// Upload is called to perform the upload.
func (u *mockUploadDescriptor) Upload(ctx context.Context, progressOutput progress.Output) (distribution.Descriptor, error) {
	if u.currentUploads != nil {
		defer atomic.AddInt32(u.currentUploads, -1)

		if atomic.AddInt32(u.currentUploads, 1) > maxUploadConcurrency {
			return distribution.Descriptor{}, errors.New("concurrency limit exceeded")
		}
	}

	// Sleep a bit to simulate a time-consuming upload.
	for i := int64(0); i <= 10; i++ {
		select {
		case <-ctx.Done():
			return distribution.Descriptor{}, ctx.Err()
		case <-time.After(10 * time.Millisecond):
			progressOutput.WriteProgress(progress.Progress{ID: u.ID(), Current: i, Total: 10})
		}
	}

	if u.simulateRetries != 0 {
		u.simulateRetries--
		return distribution.Descriptor{}, errors.New("simulating retry")
	}

	return distribution.Descriptor{}, nil
}
Example #2
0
// Download is called to perform the download.
func (d *mockDownloadDescriptor) Download(ctx context.Context, progressOutput progress.Output) (io.ReadCloser, int64, error) {
	if d.currentDownloads != nil {
		defer atomic.AddInt32(d.currentDownloads, -1)

		if atomic.AddInt32(d.currentDownloads, 1) > maxDownloadConcurrency {
			return nil, 0, errors.New("concurrency limit exceeded")
		}
	}

	// Sleep a bit to simulate a time-consuming download.
	for i := int64(0); i <= 10; i++ {
		select {
		case <-ctx.Done():
			return nil, 0, ctx.Err()
		case <-time.After(10 * time.Millisecond):
			progressOutput.WriteProgress(progress.Progress{ID: d.ID(), Action: "Downloading", Current: i, Total: 10})
		}
	}

	if d.simulateRetries != 0 {
		d.simulateRetries--
		return nil, 0, errors.New("simulating retry")
	}

	return d.mockTarStream(), 0, nil
}
Example #3
0
// Upload is called to perform the upload.
func (u *mockUploadDescriptor) Upload(ctx context.Context, progressOutput progress.Output) (digest.Digest, error) {
	if u.currentUploads != nil {
		defer atomic.AddInt32(u.currentUploads, -1)

		if atomic.AddInt32(u.currentUploads, 1) > maxUploadConcurrency {
			return "", errors.New("concurrency limit exceeded")
		}
	}

	// Sleep a bit to simulate a time-consuming upload.
	for i := int64(0); i <= 10; i++ {
		select {
		case <-ctx.Done():
			return "", ctx.Err()
		case <-time.After(10 * time.Millisecond):
			progressOutput.WriteProgress(progress.Progress{ID: u.ID(), Current: i, Total: 10})
		}
	}

	if u.simulateRetries != 0 {
		u.simulateRetries--
		return "", errors.New("simulating retry")
	}

	// For the mock implementation, use SHA256(DiffID) as the returned
	// digest.
	return digest.FromBytes([]byte(u.diffID.String()))
}
Example #4
0
// Watch adds a watcher to the transfer. The supplied channel gets progress
// updates and is closed when the transfer finishes.
func (t *transfer) Watch(progressOutput progress.Output) *Watcher {
	t.mu.Lock()
	defer t.mu.Unlock()

	w := &Watcher{
		releaseChan: make(chan struct{}),
		signalChan:  make(chan struct{}),
		running:     make(chan struct{}),
	}

	if t.broadcastDone {
		close(w.running)
		return w
	}

	t.watchers[w.releaseChan] = w

	go func() {
		defer func() {
			close(w.running)
		}()
		done := false
		for {
			t.mu.Lock()
			hasLastProgress := t.hasLastProgress
			lastProgress := t.lastProgress
			t.mu.Unlock()

			// This might write the last progress item a
			// second time (since channel closure also gets
			// us here), but that's fine.
			if hasLastProgress {
				progressOutput.WriteProgress(lastProgress)
			}

			if done {
				return
			}

			select {
			case <-w.signalChan:
			case <-w.releaseChan:
				done = true
				// Since the watcher is going to detach, make
				// sure the broadcaster is caught up so we
				// don't miss anything.
				select {
				case t.broadcastSyncChan <- struct{}{}:
				case <-t.running:
				}
			case <-t.running:
				done = true
			}
		}
	}()

	return w
}
Example #5
0
// Watch adds a watcher to the transfer. The supplied channel gets progress
// updates and is closed when the transfer finishes.
func (t *transfer) Watch(progressOutput progress.Output) *Watcher {
	t.mu.Lock()
	defer t.mu.Unlock()

	w := &Watcher{
		releaseChan: make(chan struct{}),
		signalChan:  make(chan struct{}),
		running:     make(chan struct{}),
	}

	t.watchers[w.releaseChan] = w

	if t.broadcastDone {
		close(w.running)
		return w
	}

	go func() {
		defer func() {
			close(w.running)
		}()
		var (
			done           bool
			lastWritten    progress.Progress
			hasLastWritten bool
		)
		for {
			t.mu.Lock()
			hasLastProgress := t.hasLastProgress
			lastProgress := t.lastProgress
			t.mu.Unlock()

			// Make sure we don't write the last progress item
			// twice.
			if hasLastProgress && (!done || !hasLastWritten || lastProgress != lastWritten) {
				progressOutput.WriteProgress(lastProgress)
				lastWritten = lastProgress
				hasLastWritten = true
			}

			if done {
				return
			}

			select {
			case <-w.signalChan:
			case <-w.releaseChan:
				done = true
				// Since the watcher is going to detach, make
				// sure the broadcaster is caught up so we
				// don't miss anything.
				select {
				case t.broadcastSyncChan <- struct{}{}:
				case <-t.running:
				}
			case <-t.running:
				done = true
			}
		}
	}()

	return w
}