func (s *session) logSubscriptions(ctx context.Context) error { log := log.G(ctx).WithFields(logrus.Fields{"method": "(*session).logSubscriptions"}) log.Debugf("") client := api.NewLogBrokerClient(s.conn) subscriptions, err := client.ListenSubscriptions(ctx, &api.ListenSubscriptionsRequest{}) if err != nil { return err } defer subscriptions.CloseSend() for { resp, err := subscriptions.Recv() if err != nil { return err } select { case s.subscriptions <- resp: case <-s.closed: return errSessionClosed case <-ctx.Done(): return ctx.Err() } } }
// Join asks to a member of the raft to propose // a configuration change and add us as a member thus // beginning the log replication process. This method // is called from an aspiring member to an existing member func (n *Node) Join(ctx context.Context, req *api.JoinRequest) (*api.JoinResponse, error) { nodeInfo, err := ca.RemoteNode(ctx) if err != nil { return nil, err } fields := logrus.Fields{ "node.id": nodeInfo.NodeID, "method": "(*Node).Join", } if nodeInfo.ForwardedBy != nil { fields["forwarder.id"] = nodeInfo.ForwardedBy.NodeID } log := log.G(ctx).WithFields(fields) // can't stop the raft node while an async RPC is in progress n.stopMu.RLock() defer n.stopMu.RUnlock() n.membershipLock.Lock() defer n.membershipLock.Unlock() if n.Node == nil { log.WithError(ErrStopped).Errorf(ErrStopped.Error()) return nil, ErrStopped } if !n.IsLeader() { return nil, ErrLostLeadership } // Find a unique ID for the joining member. var raftID uint64 for { raftID = uint64(rand.Int63()) + 1 if n.cluster.GetMember(raftID) == nil && !n.cluster.IsIDRemoved(raftID) { break } } err = n.addMember(ctx, req.Addr, raftID, nodeInfo.NodeID) if err != nil { log.WithError(err).Errorf("failed to add member") return nil, err } var nodes []*api.RaftMember for _, node := range n.cluster.Members() { nodes = append(nodes, &api.RaftMember{ RaftID: node.RaftID, NodeID: node.NodeID, Addr: node.Addr, }) } log.Debugf("node joined") return &api.JoinResponse{Members: nodes, RaftID: raftID}, nil }
func (d *Dispatcher) markNodesUnknown(ctx context.Context) error { log := log.G(ctx).WithField("method", "(*Dispatcher).markNodesUnknown") var nodes []*api.Node var err error d.store.View(func(tx store.ReadTx) { nodes, err = store.FindNodes(tx, store.All) }) if err != nil { return fmt.Errorf("failed to get list of nodes: %v", err) } _, err = d.store.Batch(func(batch *store.Batch) error { for _, n := range nodes { err := batch.Update(func(tx store.Tx) error { // check if node is still here node := store.GetNode(tx, n.ID) if node == nil { return nil } // do not try to resurrect down nodes if node.Status.State == api.NodeStatus_DOWN { return nil } node.Status = api.NodeStatus{ State: api.NodeStatus_UNKNOWN, Message: `Node moved to "unknown" state due to leadership change in cluster`, } nodeID := node.ID expireFunc := func() { log := log.WithField("node", nodeID) nodeStatus := api.NodeStatus{State: api.NodeStatus_DOWN, Message: `heartbeat failure for node in "unknown" state`} log.Debugf("heartbeat expiration for unknown node") if err := d.nodeRemove(nodeID, nodeStatus); err != nil { log.WithError(err).Errorf(`failed deregistering node after heartbeat expiration for node in "unknown" state`) } } if err := d.nodes.AddUnknown(node, expireFunc); err != nil { return fmt.Errorf(`adding node in "unknown" state to node store failed: %v`, err) } if err := store.UpdateNode(tx, node); err != nil { return fmt.Errorf("update failed %v", err) } return nil }) if err != nil { log.WithField("node", n.ID).WithError(err).Errorf(`failed to move node to "unknown" state`) } } return nil }) return err }
// Join asks to a member of the raft to propose // a configuration change and add us as a member thus // beginning the log replication process. This method // is called from an aspiring member to an existing member func (n *Node) Join(ctx context.Context, req *api.JoinRequest) (*api.JoinResponse, error) { nodeInfo, err := ca.RemoteNode(ctx) if err != nil { return nil, err } fields := logrus.Fields{ "node.id": nodeInfo.NodeID, "method": "(*Node).Join", } if nodeInfo.ForwardedBy != nil { fields["forwarder.id"] = nodeInfo.ForwardedBy.NodeID } log := log.G(ctx).WithFields(fields) raftID, err := identity.ParseNodeID(nodeInfo.NodeID) if err != nil { return nil, err } // can't stop the raft node while an async RPC is in progress n.stopMu.RLock() defer n.stopMu.RUnlock() if n.Node == nil { log.WithError(ErrStopped).Errorf(ErrStopped.Error()) return nil, ErrStopped } // We submit a configuration change only if the node was not registered yet if n.cluster.GetMember(raftID) == nil { err = n.addMember(ctx, req.Addr, raftID) if err != nil { log.WithError(err).Errorf("failed to add member") return nil, err } } var nodes []*api.RaftMember for _, node := range n.cluster.Members() { nodes = append(nodes, &api.RaftMember{ RaftID: node.RaftID, Addr: node.Addr, }) } log.Debugf("node joined") return &api.JoinResponse{Members: nodes}, nil }
func (s *session) logSubscriptions(ctx context.Context) error { log := log.G(ctx).WithFields(logrus.Fields{"method": "(*session).logSubscriptions"}) log.Debugf("") client := api.NewLogBrokerClient(s.conn) subscriptions, err := client.ListenSubscriptions(ctx, &api.ListenSubscriptionsRequest{}) if err != nil { return err } defer subscriptions.CloseSend() for { resp, err := subscriptions.Recv() if grpc.Code(err) == codes.Unimplemented { log.Warning("manager does not support log subscriptions") // Don't return, because returning would bounce the session select { case <-s.closed: return errSessionClosed case <-ctx.Done(): return ctx.Err() } } if err != nil { return err } select { case s.subscriptions <- resp: case <-s.closed: return errSessionClosed case <-ctx.Done(): return ctx.Err() } } }
// Join asks to a member of the raft to propose // a configuration change and add us as a member thus // beginning the log replication process. This method // is called from an aspiring member to an existing member func (n *Node) Join(ctx context.Context, req *api.JoinRequest) (*api.JoinResponse, error) { nodeInfo, err := ca.RemoteNode(ctx) if err != nil { return nil, err } fields := logrus.Fields{ "node.id": nodeInfo.NodeID, "method": "(*Node).Join", "raft_id": fmt.Sprintf("%x", n.Config.ID), } if nodeInfo.ForwardedBy != nil { fields["forwarder.id"] = nodeInfo.ForwardedBy.NodeID } log := log.G(ctx).WithFields(fields) log.Debug("") // can't stop the raft node while an async RPC is in progress n.stopMu.RLock() defer n.stopMu.RUnlock() n.membershipLock.Lock() defer n.membershipLock.Unlock() if !n.IsMember() { return nil, ErrNoRaftMember } if !n.isLeader() { return nil, ErrLostLeadership } // Find a unique ID for the joining member. var raftID uint64 for { raftID = uint64(rand.Int63()) + 1 if n.cluster.GetMember(raftID) == nil && !n.cluster.IsIDRemoved(raftID) { break } } remoteAddr := req.Addr // If the joining node sent an address like 0.0.0.0:4242, automatically // determine its actual address based on the GRPC connection. This // avoids the need for a prospective member to know its own address. requestHost, requestPort, err := net.SplitHostPort(remoteAddr) if err != nil { return nil, fmt.Errorf("invalid address %s in raft join request", remoteAddr) } requestIP := net.ParseIP(requestHost) if requestIP != nil && requestIP.IsUnspecified() { remoteHost, _, err := net.SplitHostPort(nodeInfo.RemoteAddr) if err != nil { return nil, err } remoteAddr = net.JoinHostPort(remoteHost, requestPort) } // We do not bother submitting a configuration change for the // new member if we can't contact it back using its address if err := n.checkHealth(ctx, remoteAddr, 5*time.Second); err != nil { return nil, err } err = n.addMember(ctx, remoteAddr, raftID, nodeInfo.NodeID) if err != nil { log.WithError(err).Errorf("failed to add member %x", raftID) return nil, err } var nodes []*api.RaftMember for _, node := range n.cluster.Members() { nodes = append(nodes, &api.RaftMember{ RaftID: node.RaftID, NodeID: node.NodeID, Addr: node.Addr, }) } log.Debugf("node joined") return &api.JoinResponse{Members: nodes, RaftID: raftID}, nil }
// Assignments is a stream of assignments for a node. Each message contains // either full list of tasks and secrets for the node, or an incremental update. func (d *Dispatcher) Assignments(r *api.AssignmentsRequest, stream api.Dispatcher_AssignmentsServer) error { nodeInfo, err := ca.RemoteNode(stream.Context()) if err != nil { return err } nodeID := nodeInfo.NodeID dctx, err := d.isRunningLocked() if err != nil { return err } fields := logrus.Fields{ "node.id": nodeID, "node.session": r.SessionID, "method": "(*Dispatcher).Assignments", } if nodeInfo.ForwardedBy != nil { fields["forwarder.id"] = nodeInfo.ForwardedBy.NodeID } log := log.G(stream.Context()).WithFields(fields) log.Debugf("") if _, err = d.nodes.GetWithSession(nodeID, r.SessionID); err != nil { return err } var ( sequence int64 appliesTo string initial api.AssignmentsMessage ) tasksMap := make(map[string]*api.Task) tasksUsingSecret := make(map[string]map[string]struct{}) sendMessage := func(msg api.AssignmentsMessage, assignmentType api.AssignmentsMessage_Type) error { sequence++ msg.AppliesTo = appliesTo msg.ResultsIn = strconv.FormatInt(sequence, 10) appliesTo = msg.ResultsIn msg.Type = assignmentType if err := stream.Send(&msg); err != nil { return err } return nil } // returns a slice of new secrets to send down addSecretsForTask := func(readTx store.ReadTx, t *api.Task) []*api.Secret { container := t.Spec.GetContainer() if container == nil { return nil } var newSecrets []*api.Secret for _, secretRef := range container.Secrets { // Empty ID prefix will return all secrets. Bail if there is no SecretID if secretRef.SecretID == "" { log.Debugf("invalid secret reference") continue } secretID := secretRef.SecretID log := log.WithFields(logrus.Fields{ "secret.id": secretID, "secret.name": secretRef.SecretName, }) if len(tasksUsingSecret[secretID]) == 0 { tasksUsingSecret[secretID] = make(map[string]struct{}) secrets, err := store.FindSecrets(readTx, store.ByIDPrefix(secretID)) if err != nil { log.WithError(err).Errorf("error retrieving secret") continue } if len(secrets) != 1 { log.Debugf("secret not found") continue } // If the secret was found and there was one result // (there should never be more than one because of the // uniqueness constraint), add this secret to our // initial set that we send down. newSecrets = append(newSecrets, secrets[0]) } tasksUsingSecret[secretID][t.ID] = struct{}{} } return newSecrets } // TODO(aaronl): Also send node secrets that should be exposed to // this node. nodeTasks, cancel, err := store.ViewAndWatch( d.store, func(readTx store.ReadTx) error { tasks, err := store.FindTasks(readTx, store.ByNodeID(nodeID)) if err != nil { return err } for _, t := range tasks { // We only care about tasks that are ASSIGNED or // higher. If the state is below ASSIGNED, the // task may not meet the constraints for this // node, so we have to be careful about sending // secrets associated with it. if t.Status.State < api.TaskStateAssigned { continue } tasksMap[t.ID] = t taskChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Task{ Task: t, }, }, Action: api.AssignmentChange_AssignmentActionUpdate, } initial.Changes = append(initial.Changes, taskChange) // Only send secrets down if these tasks are in < RUNNING if t.Status.State <= api.TaskStateRunning { newSecrets := addSecretsForTask(readTx, t) for _, secret := range newSecrets { secretChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Secret{ Secret: secret, }, }, Action: api.AssignmentChange_AssignmentActionUpdate, } initial.Changes = append(initial.Changes, secretChange) } } } return nil }, state.EventUpdateTask{Task: &api.Task{NodeID: nodeID}, Checks: []state.TaskCheckFunc{state.TaskCheckNodeID}}, state.EventDeleteTask{Task: &api.Task{NodeID: nodeID}, Checks: []state.TaskCheckFunc{state.TaskCheckNodeID}}, state.EventUpdateSecret{}, state.EventDeleteSecret{}, ) if err != nil { return err } defer cancel() if err := sendMessage(initial, api.AssignmentsMessage_COMPLETE); err != nil { return err } for { // Check for session expiration if _, err := d.nodes.GetWithSession(nodeID, r.SessionID); err != nil { return err } // bursty events should be processed in batches and sent out together var ( update api.AssignmentsMessage modificationCnt int batchingTimer *time.Timer batchingTimeout <-chan time.Time updateTasks = make(map[string]*api.Task) updateSecrets = make(map[string]*api.Secret) removeTasks = make(map[string]struct{}) removeSecrets = make(map[string]struct{}) ) oneModification := func() { modificationCnt++ if batchingTimer != nil { batchingTimer.Reset(batchingWaitTime) } else { batchingTimer = time.NewTimer(batchingWaitTime) batchingTimeout = batchingTimer.C } } // Release the secrets references from this task releaseSecretsForTask := func(t *api.Task) bool { var modified bool container := t.Spec.GetContainer() if container == nil { return modified } for _, secretRef := range container.Secrets { secretID := secretRef.SecretID delete(tasksUsingSecret[secretID], t.ID) if len(tasksUsingSecret[secretID]) == 0 { // No tasks are using the secret anymore delete(tasksUsingSecret, secretID) removeSecrets[secretID] = struct{}{} modified = true } } return modified } // The batching loop waits for 50 ms after the most recent // change, or until modificationBatchLimit is reached. The // worst case latency is modificationBatchLimit * batchingWaitTime, // which is 10 seconds. batchingLoop: for modificationCnt < modificationBatchLimit { select { case event := <-nodeTasks: switch v := event.(type) { // We don't monitor EventCreateTask because tasks are // never created in the ASSIGNED state. First tasks are // created by the orchestrator, then the scheduler moves // them to ASSIGNED. If this ever changes, we will need // to monitor task creations as well. case state.EventUpdateTask: // We only care about tasks that are ASSIGNED or // higher. if v.Task.Status.State < api.TaskStateAssigned { continue } if oldTask, exists := tasksMap[v.Task.ID]; exists { // States ASSIGNED and below are set by the orchestrator/scheduler, // not the agent, so tasks in these states need to be sent to the // agent even if nothing else has changed. if equality.TasksEqualStable(oldTask, v.Task) && v.Task.Status.State > api.TaskStateAssigned { // this update should not trigger a task change for the agent tasksMap[v.Task.ID] = v.Task // If this task got updated to a final state, let's release // the secrets that are being used by the task if v.Task.Status.State > api.TaskStateRunning { // If releasing the secrets caused a secret to be // removed from an agent, mark one modification if releaseSecretsForTask(v.Task) { oneModification() } } continue } } else if v.Task.Status.State <= api.TaskStateRunning { // If this task wasn't part of the assignment set before, and it's <= RUNNING // add the secrets it references to the secrets assignment. // Task states > RUNNING are worker reported only, are never created in // a > RUNNING state. var newSecrets []*api.Secret d.store.View(func(readTx store.ReadTx) { newSecrets = addSecretsForTask(readTx, v.Task) }) for _, secret := range newSecrets { updateSecrets[secret.ID] = secret } } tasksMap[v.Task.ID] = v.Task updateTasks[v.Task.ID] = v.Task oneModification() case state.EventDeleteTask: if _, exists := tasksMap[v.Task.ID]; !exists { continue } removeTasks[v.Task.ID] = struct{}{} delete(tasksMap, v.Task.ID) // Release the secrets being used by this task // Ignoring the return here. We will always mark // this as a modification, since a task is being // removed. releaseSecretsForTask(v.Task) oneModification() // TODO(aaronl): For node secrets, we'll need to handle // EventCreateSecret. case state.EventUpdateSecret: if _, exists := tasksUsingSecret[v.Secret.ID]; !exists { continue } log.Debugf("Secret %s (ID: %d) was updated though it was still referenced by one or more tasks", v.Secret.Spec.Annotations.Name, v.Secret.ID) case state.EventDeleteSecret: if _, exists := tasksUsingSecret[v.Secret.ID]; !exists { continue } log.Debugf("Secret %s (ID: %d) was deleted though it was still referenced by one or more tasks", v.Secret.Spec.Annotations.Name, v.Secret.ID) } case <-batchingTimeout: break batchingLoop case <-stream.Context().Done(): return stream.Context().Err() case <-dctx.Done(): return dctx.Err() } } if batchingTimer != nil { batchingTimer.Stop() } if modificationCnt > 0 { for id, task := range updateTasks { if _, ok := removeTasks[id]; !ok { taskChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Task{ Task: task, }, }, Action: api.AssignmentChange_AssignmentActionUpdate, } update.Changes = append(update.Changes, taskChange) } } for id, secret := range updateSecrets { // If, due to multiple updates, this secret is no longer in use, // don't send it down. if len(tasksUsingSecret[id]) == 0 { // delete this secret for the secrets to be updated // so that deleteSecrets knows the current list delete(updateSecrets, id) continue } secretChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Secret{ Secret: secret, }, }, Action: api.AssignmentChange_AssignmentActionUpdate, } update.Changes = append(update.Changes, secretChange) } for id := range removeTasks { taskChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Task{ Task: &api.Task{ID: id}, }, }, Action: api.AssignmentChange_AssignmentActionRemove, } update.Changes = append(update.Changes, taskChange) } for id := range removeSecrets { // If this secret is also being sent on the updated set // don't also add it to the removed set if _, ok := updateSecrets[id]; ok { continue } secretChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Secret{ Secret: &api.Secret{ID: id}, }, }, Action: api.AssignmentChange_AssignmentActionRemove, } update.Changes = append(update.Changes, secretChange) } if err := sendMessage(update, api.AssignmentsMessage_INCREMENTAL); err != nil { return err } } } }
func (d *Dispatcher) markNodesUnknown(ctx context.Context) error { log := log.G(ctx).WithField("method", "(*Dispatcher).markNodesUnknown") var nodes []*api.Node var err error d.store.View(func(tx store.ReadTx) { nodes, err = store.FindNodes(tx, store.All) }) if err != nil { return errors.Wrap(err, "failed to get list of nodes") } _, err = d.store.Batch(func(batch *store.Batch) error { for _, n := range nodes { err := batch.Update(func(tx store.Tx) error { // check if node is still here node := store.GetNode(tx, n.ID) if node == nil { return nil } // do not try to resurrect down nodes if node.Status.State == api.NodeStatus_DOWN { nodeCopy := node expireFunc := func() { if err := d.moveTasksToOrphaned(nodeCopy.ID); err != nil { log.WithError(err).Error(`failed to move all tasks to "ORPHANED" state`) } d.downNodes.Delete(nodeCopy.ID) } d.downNodes.Add(nodeCopy, expireFunc) return nil } node.Status.State = api.NodeStatus_UNKNOWN node.Status.Message = `Node moved to "unknown" state due to leadership change in cluster` nodeID := node.ID expireFunc := func() { log := log.WithField("node", nodeID) log.Debugf("heartbeat expiration for unknown node") if err := d.markNodeNotReady(nodeID, api.NodeStatus_DOWN, `heartbeat failure for node in "unknown" state`); err != nil { log.WithError(err).Errorf(`failed deregistering node after heartbeat expiration for node in "unknown" state`) } } if err := d.nodes.AddUnknown(node, expireFunc); err != nil { return errors.Wrap(err, `adding node in "unknown" state to node store failed`) } if err := store.UpdateNode(tx, node); err != nil { return errors.Wrap(err, "update failed") } return nil }) if err != nil { log.WithField("node", n.ID).WithError(err).Errorf(`failed to move node to "unknown" state`) } } return nil }) return err }
func (s *session) watch(ctx context.Context) error { log := log.G(ctx).WithFields(logrus.Fields{"method": "(*session).watch"}) log.Debugf("") var ( resp *api.AssignmentsMessage assignmentWatch api.Dispatcher_AssignmentsClient tasksWatch api.Dispatcher_TasksClient streamReference string tasksFallback bool err error ) client := api.NewDispatcherClient(s.conn) for { // If this is the first time we're running the loop, or there was a reference mismatch // attempt to get the assignmentWatch if assignmentWatch == nil && !tasksFallback { assignmentWatch, err = client.Assignments(ctx, &api.AssignmentsRequest{SessionID: s.sessionID}) if err != nil { return err } } // We have an assignmentWatch, let's try to receive an AssignmentMessage if assignmentWatch != nil { // If we get a code = 12 desc = unknown method Assignments, try to use tasks resp, err = assignmentWatch.Recv() if err != nil { if grpc.Code(err) != codes.Unimplemented { return err } tasksFallback = true assignmentWatch = nil log.WithError(err).Infof("falling back to Tasks") } } // This code is here for backwards compatibility (so that newer clients can use the // older method Tasks) if tasksWatch == nil && tasksFallback { tasksWatch, err = client.Tasks(ctx, &api.TasksRequest{SessionID: s.sessionID}) if err != nil { return err } } if tasksWatch != nil { // When falling back to Tasks because of an old managers, we wrap the tasks in assignments. var taskResp *api.TasksMessage var assignmentChanges []*api.AssignmentChange taskResp, err = tasksWatch.Recv() if err != nil { return err } for _, t := range taskResp.Tasks { taskChange := &api.AssignmentChange{ Assignment: &api.Assignment{ Item: &api.Assignment_Task{ Task: t, }, }, Action: api.AssignmentChange_AssignmentActionUpdate, } assignmentChanges = append(assignmentChanges, taskChange) } resp = &api.AssignmentsMessage{Type: api.AssignmentsMessage_COMPLETE, Changes: assignmentChanges} } // If there seems to be a gap in the stream, let's break out of the inner for and // re-sync (by calling Assignments again). if streamReference != "" && streamReference != resp.AppliesTo { assignmentWatch = nil } else { streamReference = resp.ResultsIn } select { case s.assignments <- resp: case <-s.closed: return errSessionClosed case <-ctx.Done(): return ctx.Err() } } }
// Assignments is a stream of assignments for a node. Each message contains // either full list of tasks and secrets for the node, or an incremental update. func (d *Dispatcher) Assignments(r *api.AssignmentsRequest, stream api.Dispatcher_AssignmentsServer) error { nodeInfo, err := ca.RemoteNode(stream.Context()) if err != nil { return err } nodeID := nodeInfo.NodeID if err := d.isRunningLocked(); err != nil { return err } fields := logrus.Fields{ "node.id": nodeID, "node.session": r.SessionID, "method": "(*Dispatcher).Assignments", } if nodeInfo.ForwardedBy != nil { fields["forwarder.id"] = nodeInfo.ForwardedBy.NodeID } log := log.G(stream.Context()).WithFields(fields) log.Debugf("") if _, err = d.nodes.GetWithSession(nodeID, r.SessionID); err != nil { return err } var ( sequence int64 appliesTo string initial api.AssignmentsMessage ) tasksMap := make(map[string]*api.Task) sendMessage := func(msg api.AssignmentsMessage, assignmentType api.AssignmentsMessage_Type) error { sequence++ msg.AppliesTo = appliesTo msg.ResultsIn = strconv.FormatInt(sequence, 10) appliesTo = msg.ResultsIn msg.Type = assignmentType if err := stream.Send(&msg); err != nil { return err } return nil } // TODO(aaronl): Also send node secrets that should be exposed to // this node. nodeTasks, cancel, err := store.ViewAndWatch( d.store, func(readTx store.ReadTx) error { tasks, err := store.FindTasks(readTx, store.ByNodeID(nodeID)) if err != nil { return err } for _, t := range tasks { // We only care about tasks that are ASSIGNED or // higher. If the state is below ASSIGNED, the // task may not meet the constraints for this // node, so we have to be careful about sending // secrets associated with it. if t.Status.State < api.TaskStateAssigned { continue } tasksMap[t.ID] = t initial.UpdateTasks = append(initial.UpdateTasks, t) } return nil }, state.EventUpdateTask{Task: &api.Task{NodeID: nodeID}, Checks: []state.TaskCheckFunc{state.TaskCheckNodeID}}, state.EventDeleteTask{Task: &api.Task{NodeID: nodeID}, Checks: []state.TaskCheckFunc{state.TaskCheckNodeID}}, ) if err != nil { return err } defer cancel() if err := sendMessage(initial, api.AssignmentsMessage_COMPLETE); err != nil { return err } for { // Check for session expiration if _, err := d.nodes.GetWithSession(nodeID, r.SessionID); err != nil { return err } // bursty events should be processed in batches and sent out together var ( update api.AssignmentsMessage modificationCnt int batchingTimer *time.Timer batchingTimeout <-chan time.Time updateTasks = make(map[string]*api.Task) removeTasks = make(map[string]struct{}) ) oneModification := func() { modificationCnt++ if batchingTimer != nil { batchingTimer.Reset(batchingWaitTime) } else { batchingTimer = time.NewTimer(batchingWaitTime) batchingTimeout = batchingTimer.C } } // The batching loop waits for 50 ms after the most recent // change, or until modificationBatchLimit is reached. The // worst case latency is modificationBatchLimit * batchingWaitTime, // which is 10 seconds. batchingLoop: for modificationCnt < modificationBatchLimit { select { case event := <-nodeTasks: switch v := event.(type) { // We don't monitor EventCreateTask because tasks are // never created in the ASSIGNED state. First tasks are // created by the orchestrator, then the scheduler moves // them to ASSIGNED. If this ever changes, we will need // to monitor task creations as well. case state.EventUpdateTask: // We only care about tasks that are ASSIGNED or // higher. if v.Task.Status.State < api.TaskStateAssigned { continue } if oldTask, exists := tasksMap[v.Task.ID]; exists { // States ASSIGNED and below are set by the orchestrator/scheduler, // not the agent, so tasks in these states need to be sent to the // agent even if nothing else has changed. if equality.TasksEqualStable(oldTask, v.Task) && v.Task.Status.State > api.TaskStateAssigned { // this update should not trigger a task change for the agent tasksMap[v.Task.ID] = v.Task continue } } tasksMap[v.Task.ID] = v.Task updateTasks[v.Task.ID] = v.Task oneModification() case state.EventDeleteTask: if _, exists := tasksMap[v.Task.ID]; !exists { continue } removeTasks[v.Task.ID] = struct{}{} delete(tasksMap, v.Task.ID) oneModification() } case <-batchingTimeout: break batchingLoop case <-stream.Context().Done(): return stream.Context().Err() case <-d.ctx.Done(): return d.ctx.Err() } } if batchingTimer != nil { batchingTimer.Stop() } if modificationCnt > 0 { for id, task := range updateTasks { if _, ok := removeTasks[id]; !ok { update.UpdateTasks = append(update.UpdateTasks, task) } } for id := range removeTasks { update.RemoveTasks = append(update.RemoveTasks, id) } if err := sendMessage(update, api.AssignmentsMessage_INCREMENTAL); err != nil { return err } } } }