Example #1
0
// CanonicalKeyID returns the ID of the public bytes version of a TUF key.
// On regular RSA/ECDSA TUF keys, this is just the key ID.  On X509 RSA/ECDSA
// TUF keys, this is the key ID of the public key part of the key.
func CanonicalKeyID(k data.PublicKey) (string, error) {
	switch k.Algorithm() {
	case data.ECDSAx509Key, data.RSAx509Key:
		return trustmanager.X509PublicKeyID(k)
	default:
		return k.ID(), nil
	}
}
func initRoles(kdb *keys.KeyDB, rootKey, targetsKey, snapshotKey, timestampKey data.PublicKey) error {
	rootRole, err := data.NewRole("root", 1, []string{rootKey.ID()}, nil, nil)
	if err != nil {
		return err
	}
	targetsRole, err := data.NewRole("targets", 1, []string{targetsKey.ID()}, nil, nil)
	if err != nil {
		return err
	}
	snapshotRole, err := data.NewRole("snapshot", 1, []string{snapshotKey.ID()}, nil, nil)
	if err != nil {
		return err
	}
	timestampRole, err := data.NewRole("timestamp", 1, []string{timestampKey.ID()}, nil, nil)
	if err != nil {
		return err
	}

	if err := kdb.AddRole(rootRole); err != nil {
		return err
	}
	if err := kdb.AddRole(targetsRole); err != nil {
		return err
	}
	if err := kdb.AddRole(snapshotRole); err != nil {
		return err
	}
	if err := kdb.AddRole(timestampRole); err != nil {
		return err
	}
	return nil
}
Example #3
0
func (v Ed25519Verifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
	var sigBytes [ed25519.SignatureSize]byte
	if len(sig) != len(sigBytes) {
		logrus.Infof("signature length is incorrect, must be %d, was %d.", ed25519.SignatureSize, len(sig))
		return ErrInvalid
	}
	copy(sigBytes[:], sig)

	var keyBytes [ed25519.PublicKeySize]byte
	copy(keyBytes[:], key.Public())

	if !ed25519.Verify(&keyBytes, msg, &sigBytes) {
		logrus.Infof("failed ed25519 verification")
		return ErrInvalid
	}
	return nil
}
Example #4
0
// Verify does the actual check.
// N.B. We have not been able to make this work in a way that is compatible
// with PyCrypto.
func (v RSAPyCryptoVerifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
	digest := sha256.Sum256(msg)

	k, _ := pem.Decode([]byte(key.Public()))
	if k == nil {
		logrus.Infof("failed to decode PEM-encoded x509 certificate")
		return ErrInvalid
	}

	pub, err := x509.ParsePKIXPublicKey(k.Bytes)
	if err != nil {
		logrus.Infof("failed to parse public key: %s\n", err)
		return ErrInvalid
	}

	return verifyPSS(pub, digest[:], sig)
}
Example #5
0
func (v Ed25519Verifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
	if key.Algorithm() != data.ED25519Key {
		return ErrInvalidKeyType{}
	}
	var sigBytes [ed25519.SignatureSize]byte
	if len(sig) != ed25519.SignatureSize {
		logrus.Infof("signature length is incorrect, must be %d, was %d.", ed25519.SignatureSize, len(sig))
		return ErrInvalid
	}
	copy(sigBytes[:], sig)

	var keyBytes [ed25519.PublicKeySize]byte
	pub := key.Public()
	if len(pub) != ed25519.PublicKeySize {
		logrus.Errorf("public key is incorrect size, must be %d, was %d.", ed25519.PublicKeySize, len(pub))
		return ErrInvalidKeyLength{msg: fmt.Sprintf("ed25519 public key must be %d bytes.", ed25519.PublicKeySize)}
	}
	n := copy(keyBytes[:], key.Public())
	if n < ed25519.PublicKeySize {
		logrus.Errorf("failed to copy the key, must have %d bytes, copied %d bytes.", ed25519.PublicKeySize, n)
		return ErrInvalid
	}

	if !ed25519.Verify(&keyBytes, msg, &sigBytes) {
		logrus.Infof("failed ed25519 verification")
		return ErrInvalid
	}
	return nil
}
Example #6
0
func getRSAPubKey(key data.PublicKey) (crypto.PublicKey, error) {
	algorithm := key.Algorithm()
	var pubKey crypto.PublicKey

	switch algorithm {
	case data.RSAx509Key:
		pemCert, _ := pem.Decode([]byte(key.Public()))
		if pemCert == nil {
			logrus.Infof("failed to decode PEM-encoded x509 certificate")
			return nil, ErrInvalid
		}
		cert, err := x509.ParseCertificate(pemCert.Bytes)
		if err != nil {
			logrus.Infof("failed to parse x509 certificate: %s\n", err)
			return nil, ErrInvalid
		}
		pubKey = cert.PublicKey
	case data.RSAKey:
		var err error
		pubKey, err = x509.ParsePKIXPublicKey(key.Public())
		if err != nil {
			logrus.Infof("failed to parse public key: %s\n", err)
			return nil, ErrInvalid
		}
	default:
		// only accept RSA keys
		logrus.Infof("invalid key type for RSAPSS verifier: %s", algorithm)
		return nil, ErrInvalidKeyType{}
	}

	return pubKey, nil
}
Example #7
0
// Verify does the actual check.
func (v ECDSAVerifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
	algorithm := key.Algorithm()
	var pubKey crypto.PublicKey

	switch algorithm {
	case data.ECDSAx509Key:
		pemCert, _ := pem.Decode([]byte(key.Public()))
		if pemCert == nil {
			logrus.Infof("failed to decode PEM-encoded x509 certificate for keyID: %s", key.ID())
			logrus.Debugf("certificate bytes: %s", string(key.Public()))
			return ErrInvalid
		}
		cert, err := x509.ParseCertificate(pemCert.Bytes)
		if err != nil {
			logrus.Infof("failed to parse x509 certificate: %s\n", err)
			return ErrInvalid
		}
		pubKey = cert.PublicKey
	case data.ECDSAKey:
		var err error
		pubKey, err = x509.ParsePKIXPublicKey(key.Public())
		if err != nil {
			logrus.Infof("Failed to parse private key for keyID: %s, %s\n", key.ID(), err)
			return ErrInvalid
		}
	default:
		// only accept ECDSA keys.
		logrus.Infof("invalid key type for ECDSA verifier: %s", algorithm)
		return ErrInvalidKeyType{}
	}

	ecdsaPubKey, ok := pubKey.(*ecdsa.PublicKey)
	if !ok {
		logrus.Infof("value isn't an ECDSA public key")
		return ErrInvalid
	}

	sigLength := len(sig)
	expectedOctetLength := 2 * ((ecdsaPubKey.Params().BitSize + 7) >> 3)
	if sigLength != expectedOctetLength {
		logrus.Infof("signature had an unexpected length")
		return ErrInvalid
	}

	rBytes, sBytes := sig[:sigLength/2], sig[sigLength/2:]
	r := new(big.Int).SetBytes(rBytes)
	s := new(big.Int).SetBytes(sBytes)

	digest := sha256.Sum256(msg)

	if !ecdsa.Verify(ecdsaPubKey, digest[:], r, s) {
		logrus.Infof("failed ECDSA signature validation")
		return ErrInvalid
	}

	return nil
}
Example #8
0
func (db *KeyDB) AddKey(k *data.PublicKey) {
	db.keys[k.ID()] = k
}