Example #1
0
func (c *Closure) Gets(x, y *big.Int) *ethutil.Value {
	if x.Int64() >= int64(len(c.Code)) || y.Int64() >= int64(len(c.Code)) {
		return ethutil.NewValue(0)
	}

	partial := c.Code[x.Int64() : x.Int64()+y.Int64()]

	return ethutil.NewValue(partial)
}
Example #2
0
func ParanoiaCheck(t1 *Trie) (bool, *Trie) {
	t2 := New(ethutil.Config.Db, "")

	t1.NewIterator().Each(func(key string, v *ethutil.Value) {
		t2.Update(key, v.Str())
	})

	a := ethutil.NewValue(t2.Root).Bytes()
	b := ethutil.NewValue(t1.Root).Bytes()

	return bytes.Compare(a, b) == 0, t2
}
Example #3
0
func (c *StateObject) GetInstr(pc *big.Int) *ethutil.Value {
	if int64(len(c.Code)-1) < pc.Int64() {
		return ethutil.NewValue(0)
	}

	return ethutil.NewValueFromBytes([]byte{c.Code[pc.Int64()]})
}
Example #4
0
func (t *Trie) getState(node interface{}, key []int) interface{} {
	n := ethutil.NewValue(node)
	// Return the node if key is empty (= found)
	if len(key) == 0 || n.IsNil() || n.Len() == 0 {
		return node
	}

	currentNode := t.getNode(node)
	length := currentNode.Len()

	if length == 0 {
		return ""
	} else if length == 2 {
		// Decode the key
		k := CompactDecode(currentNode.Get(0).Str())
		v := currentNode.Get(1).Raw()

		if len(key) >= len(k) && CompareIntSlice(k, key[:len(k)]) {
			return t.getState(v, key[len(k):])
		} else {
			return ""
		}
	} else if length == 17 {
		return t.getState(currentNode.Get(key[0]).Raw(), key[1:])
	}

	// It shouldn't come this far
	panic("unexpected return")
}
Example #5
0
// Write to the Ethereum network specifying the type of the message and
// the data. Data can be of type RlpEncodable or []interface{}. Returns
// nil or if something went wrong an error.
func (self *Connection) Write(typ MsgType, v ...interface{}) error {
	var pack []byte

	slice := [][]interface{}{[]interface{}{byte(typ)}}
	for _, value := range v {
		if encodable, ok := value.(ethutil.RlpEncodeDecode); ok {
			slice = append(slice, encodable.RlpValue())
		} else if raw, ok := value.([]interface{}); ok {
			slice = append(slice, raw)
		} else {
			panic(fmt.Sprintf("Unable to 'write' object of type %T", value))
		}
	}

	// Encode the type and the (RLP encoded) data for sending over the wire
	encoded := ethutil.NewValue(slice).Encode()
	payloadLength := ethutil.NumberToBytes(uint32(len(encoded)), 32)

	// Write magic token and payload length (first 8 bytes)
	pack = append(MagicToken, payloadLength...)
	pack = append(pack, encoded...)

	// Write to the connection
	_, err := self.conn.Write(pack)
	if err != nil {
		return err
	}

	return nil
}
Example #6
0
func TestRun2(t *testing.T) {
	ethutil.ReadConfig("")

	db, _ := ethdb.NewMemDatabase()
	state := NewState(ethutil.NewTrie(db, ""))

	script := Compile([]string{
		"PUSH", "0",
		"PUSH", "0",
		"TXSENDER",
		"PUSH", "10000000",
		"MKTX",
	})
	fmt.Println(ethutil.NewValue(script))

	tx := NewTransaction(ContractAddr, ethutil.Big("100000000000000000000000000000000000000000000000000"), script)
	fmt.Printf("contract addr %x\n", tx.Hash()[12:])
	contract := MakeContract(tx, state)
	vm := &Vm{}

	vm.Process(contract, state, RuntimeVars{
		address:     tx.Hash()[12:],
		blockNumber: 1,
		sender:      ethutil.FromHex("cd1722f3947def4cf144679da39c4c32bdc35681"),
		prevHash:    ethutil.FromHex("5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6"),
		coinbase:    ethutil.FromHex("2adc25665018aa1fe0e6bc666dac8fc2697ff9ba"),
		time:        1,
		diff:        big.NewInt(256),
		txValue:     tx.Value,
		txData:      tx.Data,
	})
}
Example #7
0
func (i *Console) PrintRoot() {
	root := ethutil.NewValue(i.trie.Root)
	if len(root.Bytes()) != 0 {
		fmt.Println(hex.EncodeToString(root.Bytes()))
	} else {
		fmt.Println(i.trie.Root)
	}
}
Example #8
0
func CreateTxSha(receipts Receipts) (sha []byte) {
	trie := ethtrie.New(ethutil.Config.Db, "")
	for i, receipt := range receipts {
		trie.Update(string(ethutil.NewValue(i).Encode()), string(ethutil.NewValue(receipt.RlpData()).Encode()))
	}

	switch trie.Root.(type) {
	case string:
		sha = []byte(trie.Root.(string))
	case []byte:
		sha = trie.Root.([]byte)
	default:
		panic(fmt.Sprintf("invalid root type %T", trie.Root))
	}

	return sha
}
Example #9
0
func (it *TrieIterator) Collect() [][]byte {
	if it.trie.Root == "" {
		return nil
	}

	it.getNode(ethutil.NewValue(it.trie.Root).Bytes())

	return it.shas
}
Example #10
0
func (t *Trie) Get(key string) string {
	t.mut.RLock()
	defer t.mut.RUnlock()

	k := CompactHexDecode(key)
	c := ethutil.NewValue(t.getState(t.Root, k))

	return c.Str()
}
Example #11
0
func CompileToValues(code []string) (script []*ethutil.Value) {
	script = make([]*ethutil.Value, len(code))
	for i, val := range code {
		instr, _ := ethutil.CompileInstr(val)

		script[i] = ethutil.NewValue(instr)
	}

	return
}
Example #12
0
// Set the earliest and latest block for filtering.
// -1 = latest block (i.e., the current block)
// hash = particular hash from-to
func (self *Filter) SetEarliestBlock(earliest interface{}) {
	e := ethutil.NewValue(earliest)

	// Check for -1 (latest) otherwise assume bytes
	if e.Int() == -1 {
		self.earliest = self.eth.BlockChain().CurrentBlock.Hash()
	} else if e.Len() > 0 {
		self.earliest = e.Bytes()
	} else {
		panic(fmt.Sprintf("earliest has to be either -1 or a valid hash: %v (%T)", e, e.Val))
	}
}
Example #13
0
func (self *Filter) SetLatestBlock(latest interface{}) {
	l := ethutil.NewValue(latest)

	// Check for -1 (latest) otherwise assume bytes
	if l.Int() == -1 {
		self.latest = self.eth.BlockChain().CurrentBlock.Hash()
	} else if l.Len() > 0 {
		self.latest = l.Bytes()
	} else {
		panic(fmt.Sprintf("latest has to be either -1 or a valid hash: %v", l))
	}
}
Example #14
0
func TestSnapshot(t *testing.T) {
	db, _ := ethdb.NewMemDatabase()
	ethutil.ReadConfig(".ethtest", "/tmp/ethtest", "")
	ethutil.Config.Db = db

	state := New(ethtrie.New(db, ""))

	stateObject := state.GetOrNewStateObject([]byte("aa"))

	stateObject.SetStorage(ethutil.Big("0"), ethutil.NewValue(42))

	snapshot := state.Copy()

	stateObject = state.GetStateObject([]byte("aa"))
	stateObject.SetStorage(ethutil.Big("0"), ethutil.NewValue(43))

	state.Set(snapshot)

	stateObject = state.GetStateObject([]byte("aa"))
	res := stateObject.GetStorage(ethutil.Big("0"))
	if !res.Cmp(ethutil.NewValue(42)) {
		t.Error("Expected storage 0 to be 42", res)
	}
}
Example #15
0
func (cache *Cache) PutValue(v interface{}, force bool) interface{} {
	value := ethutil.NewValue(v)

	enc := value.Encode()
	if len(enc) >= 32 || force {
		sha := ethcrypto.Sha3Bin(enc)

		cache.nodes[string(sha)] = NewNode(sha, value, true)
		cache.IsDirty = true

		return sha
	}

	return v
}
Example #16
0
// Iterate over each storage address and yield callback
func (self *StateObject) EachStorage(cb ethtrie.EachCallback) {
	// First loop over the uncommit/cached values in storage
	for key, value := range self.storage {
		// XXX Most iterators Fns as it stands require encoded values
		encoded := ethutil.NewValue(value.Encode())
		cb(key, encoded)
	}

	it := self.State.Trie.NewIterator()
	it.Each(func(key string, value *ethutil.Value) {
		// If it's cached don't call the callback.
		if self.storage[key] == nil {
			cb(key, value)
		}
	})
}
Example #17
0
func (t *Trie) getNode(node interface{}) *ethutil.Value {
	n := ethutil.NewValue(node)

	if !n.Get(0).IsNil() {
		return n
	}

	str := n.Str()
	if len(str) == 0 {
		return n
	} else if len(str) < 32 {
		return ethutil.NewValueFromBytes([]byte(str))
	}

	data := t.cache.Get(n.Bytes())

	return data
}
Example #18
0
// The basic message writer takes care of writing data over the given
// connection and does some basic error checking
func WriteMessage(conn net.Conn, msg *Msg) error {
	var pack []byte

	// Encode the type and the (RLP encoded) data for sending over the wire
	encoded := ethutil.NewValue(append([]interface{}{byte(msg.Type)}, msg.Data.Slice()...)).Encode()
	payloadLength := ethutil.NumberToBytes(uint32(len(encoded)), 32)

	// Write magic token and payload length (first 8 bytes)
	pack = append(MagicToken, payloadLength...)
	pack = append(pack, encoded...)
	//fmt.Printf("payload %v (%v) %q\n", msg.Type, conn.RemoteAddr(), encoded)

	// Write to the connection
	_, err := conn.Write(pack)
	if err != nil {
		return err
	}

	return nil
}
Example #19
0
func TestNew(t *testing.T) {
	pipe := New(nil)

	var addr, privy, recp, data []byte
	var object *ethstate.StateObject
	var key *ethcrypto.KeyPair

	world := pipe.World()
	world.Get(addr)
	world.Coinbase()
	world.IsMining()
	world.IsListening()
	world.State()
	peers := world.Peers()
	peers.Len()

	// Shortcut functions
	pipe.Balance(addr)
	pipe.Nonce(addr)
	pipe.Block(addr)
	pipe.Storage(addr, addr)
	pipe.ToAddress(privy)
	pipe.Exists(addr)
	// Doesn't change state
	pipe.Execute(addr, nil, Val(0), Val(1000000), Val(10))
	// Doesn't change state
	pipe.ExecuteObject(object, nil, Val(0), Val(1000000), Val(10))

	conf := world.Config()
	namereg := conf.Get("NameReg")
	namereg.Storage(addr)

	var err error
	// Transact
	err = pipe.Transact(key, recp, ethutil.NewValue(0), ethutil.NewValue(0), ethutil.NewValue(0), nil)
	if err != nil {
		t.Error(err)
	}
	// Create
	err = pipe.Transact(key, nil, ethutil.NewValue(0), ethutil.NewValue(0), ethutil.NewValue(0), data)
	if err != nil {
		t.Error(err)
	}
}
Example #20
0
func CreateKeyPair(force bool) {
	data, _ := ethutil.Config.Db.Get([]byte("KeyRing"))
	if len(data) == 0 || force {
		pub, prv := secp256k1.GenerateKeyPair()
		addr := ethutil.Sha3Bin(pub[1:])[12:]

		fmt.Printf(`
Generating new address and keypair.
Please keep your keys somewhere save.
Currently Ethereum(G) does not support
exporting keys.

++++++++++++++++ KeyRing +++++++++++++++++++
addr: %x
prvk: %x
pubk: %x
++++++++++++++++++++++++++++++++++++++++++++

`, addr, prv, pub)

		keyRing := ethutil.NewValue([]interface{}{prv, addr, pub[1:]})
		ethutil.Config.Db.Put([]byte("KeyRing"), keyRing.Encode())
	}
}
Example #21
0
func (block *Block) PrintHash() {
	fmt.Println(block)
	fmt.Println(ethutil.NewValue(ethutil.Encode([]interface{}{block.PrevHash, block.UncleSha, block.Coinbase, block.state.trie.Root, block.TxSha, block.Difficulty, block.Time, block.Extra, block.Nonce})))
}
Example #22
0
func (self *Pipe) Balance(addr []byte) *ethutil.Value {
	return ethutil.NewValue(self.World().safeGet(addr).Balance)
}
Example #23
0
func NewMessage(msgType MsgType, data interface{}) *Msg {
	return &Msg{
		Type: msgType,
		Data: ethutil.NewValue(data),
	}
}
Example #24
0
func (tx *Transaction) Hash() []byte {
	data := []interface{}{tx.Nonce, tx.GasPrice, tx.Gas, tx.Recipient, tx.Value, tx.Data}

	return ethcrypto.Sha3Bin(ethutil.NewValue(data).Encode())
}
Example #25
0
func (tx *Transaction) RlpValue() *ethutil.Value {
	return ethutil.NewValue(tx.RlpData())
}
Example #26
0
// Creates an ethereum address given the bytes and the nonce
func CreateAddress(b []byte, nonce uint64) []byte {
	return Sha3Bin(ethutil.NewValue([]interface{}{b, nonce}).Encode())[12:]
}
Example #27
0
func (k *KeyPair) RlpValue() *ethutil.Value {
	return ethutil.NewValue(k.PrivateKey)
}
Example #28
0
func (tx *Transaction) CreationAddress() []byte {
	return ethcrypto.Sha3Bin(ethutil.NewValue([]interface{}{tx.Sender(), tx.Nonce}).Encode())[12:]
}
Example #29
0
func (self *Vm) RunClosure(closure *Closure) (ret []byte, err error) {
	if self.Recoverable {
		// Recover from any require exception
		defer func() {
			if r := recover(); r != nil {
				ret = closure.Return(nil)
				err = fmt.Errorf("%v", r)
				vmlogger.Errorln("vm err", err)
			}
		}()
	}

	// Debug hook
	if self.Dbg != nil {
		self.Dbg.SetCode(closure.Code)
	}

	// Don't bother with the execution if there's no code.
	if len(closure.Code) == 0 {
		return closure.Return(nil), nil
	}

	vmlogger.Debugf("(%s) %x gas: %v (d) %x\n", self.Fn, closure.Address(), closure.Gas, closure.Args)

	var (
		op OpCode

		mem      = &Memory{}
		stack    = NewStack()
		pc       = big.NewInt(0)
		step     = 0
		prevStep = 0
		require  = func(m int) {
			if stack.Len() < m {
				panic(fmt.Sprintf("%04v (%v) stack err size = %d, required = %d", pc, op, stack.Len(), m))
			}
		}
	)

	for {
		prevStep = step
		// The base for all big integer arithmetic
		base := new(big.Int)

		step++
		// Get the memory location of pc
		val := closure.Get(pc)
		// Get the opcode (it must be an opcode!)
		op = OpCode(val.Uint())

		// XXX Leave this Println intact. Don't change this to the log system.
		// Used for creating diffs between implementations
		if self.logTy == LogTyDiff {
			/*
				switch op {
				case STOP, RETURN, SUICIDE:
					closure.object.EachStorage(func(key string, value *ethutil.Value) {
						value.Decode()
						fmt.Printf("%x %x\n", new(big.Int).SetBytes([]byte(key)).Bytes(), value.Bytes())
					})
				}
			*/

			b := pc.Bytes()
			if len(b) == 0 {
				b = []byte{0}
			}

			fmt.Printf("%x %x %x %x\n", closure.Address(), b, []byte{byte(op)}, closure.Gas.Bytes())
		}

		gas := new(big.Int)
		addStepGasUsage := func(amount *big.Int) {
			if amount.Cmp(ethutil.Big0) >= 0 {
				gas.Add(gas, amount)
			}
		}

		addStepGasUsage(GasStep)

		var newMemSize uint64 = 0
		switch op {
		case STOP:
			gas.Set(ethutil.Big0)
		case SUICIDE:
			gas.Set(ethutil.Big0)
		case SLOAD:
			gas.Set(GasSLoad)
		case SSTORE:
			var mult *big.Int
			y, x := stack.Peekn()
			val := closure.GetStorage(x)
			if val.BigInt().Cmp(ethutil.Big0) == 0 && len(y.Bytes()) > 0 {
				mult = ethutil.Big2
			} else if val.BigInt().Cmp(ethutil.Big0) != 0 && len(y.Bytes()) == 0 {
				mult = ethutil.Big0
			} else {
				mult = ethutil.Big1
			}
			gas = new(big.Int).Mul(mult, GasSStore)
		case BALANCE:
			gas.Set(GasBalance)
		case MSTORE:
			require(2)
			newMemSize = stack.Peek().Uint64() + 32
		case MLOAD:
			require(1)

			newMemSize = stack.Peek().Uint64() + 32
		case MSTORE8:
			require(2)
			newMemSize = stack.Peek().Uint64() + 1
		case RETURN:
			require(2)

			newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-2].Uint64()
		case SHA3:
			require(2)

			gas.Set(GasSha)

			newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-2].Uint64()
		case CALLDATACOPY:
			require(3)

			newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-3].Uint64()
		case CODECOPY:
			require(3)

			newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-3].Uint64()
		case CALL:
			require(7)
			gas.Set(GasCall)
			addStepGasUsage(stack.data[stack.Len()-1])

			x := stack.data[stack.Len()-6].Uint64() + stack.data[stack.Len()-7].Uint64()
			y := stack.data[stack.Len()-4].Uint64() + stack.data[stack.Len()-5].Uint64()

			newMemSize = uint64(math.Max(float64(x), float64(y)))
		case CREATE:
			require(3)
			gas.Set(GasCreate)

			newMemSize = stack.data[stack.Len()-2].Uint64() + stack.data[stack.Len()-3].Uint64()
		}

		newMemSize = (newMemSize + 31) / 32 * 32
		if newMemSize > uint64(mem.Len()) {
			m := GasMemory.Uint64() * (newMemSize - uint64(mem.Len())) / 32
			addStepGasUsage(big.NewInt(int64(m)))
		}

		if !closure.UseGas(gas) {
			err := fmt.Errorf("Insufficient gas for %v. req %v has %v", op, gas, closure.Gas)

			closure.UseGas(closure.Gas)

			return closure.Return(nil), err
		}

		self.Printf("(pc) %-3d -o- %-14s", pc, op.String())
		self.Printf(" (g) %-3v (%v)", gas, closure.Gas)

		mem.Resize(newMemSize)

		switch op {
		case LOG:
			stack.Print()
			mem.Print()
			// 0x20 range
		case ADD:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v + %v", y, x)

			base.Add(y, x)

			ensure256(base)

			self.Printf(" = %v", base)
			// Pop result back on the stack
			stack.Push(base)
		case SUB:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v - %v", y, x)

			base.Sub(y, x)

			ensure256(base)

			self.Printf(" = %v", base)
			// Pop result back on the stack
			stack.Push(base)
		case MUL:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v * %v", y, x)

			base.Mul(y, x)

			ensure256(base)

			self.Printf(" = %v", base)
			// Pop result back on the stack
			stack.Push(base)
		case DIV:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v / %v", y, x)

			if x.Cmp(ethutil.Big0) != 0 {
				base.Div(y, x)
			}

			ensure256(base)

			self.Printf(" = %v", base)
			// Pop result back on the stack
			stack.Push(base)
		case SDIV:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v / %v", y, x)

			if x.Cmp(ethutil.Big0) != 0 {
				base.Div(y, x)
			}

			ensure256(base)

			self.Printf(" = %v", base)
			// Pop result back on the stack
			stack.Push(base)
		case MOD:
			require(2)
			x, y := stack.Popn()

			self.Printf(" %v %% %v", y, x)

			base.Mod(y, x)

			ensure256(base)

			self.Printf(" = %v", base)
			stack.Push(base)
		case SMOD:
			require(2)
			x, y := stack.Popn()

			self.Printf(" %v %% %v", y, x)

			base.Mod(y, x)

			ensure256(base)

			self.Printf(" = %v", base)
			stack.Push(base)

		case EXP:
			require(2)
			x, y := stack.Popn()

			self.Printf(" %v ** %v", y, x)

			base.Exp(y, x, Pow256)

			ensure256(base)

			self.Printf(" = %v", base)

			stack.Push(base)
		case NEG:
			require(1)
			base.Sub(Pow256, stack.Pop())
			stack.Push(base)
		case LT:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v < %v", y, x)
			// x < y
			if y.Cmp(x) < 0 {
				stack.Push(ethutil.BigTrue)
			} else {
				stack.Push(ethutil.BigFalse)
			}
		case GT:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v > %v", y, x)

			// x > y
			if y.Cmp(x) > 0 {
				stack.Push(ethutil.BigTrue)
			} else {
				stack.Push(ethutil.BigFalse)
			}

		case SLT:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v < %v", y, x)
			// x < y
			if y.Cmp(x) < 0 {
				stack.Push(ethutil.BigTrue)
			} else {
				stack.Push(ethutil.BigFalse)
			}
		case SGT:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v > %v", y, x)

			// x > y
			if y.Cmp(x) > 0 {
				stack.Push(ethutil.BigTrue)
			} else {
				stack.Push(ethutil.BigFalse)
			}

		case EQ:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v == %v", y, x)

			// x == y
			if x.Cmp(y) == 0 {
				stack.Push(ethutil.BigTrue)
			} else {
				stack.Push(ethutil.BigFalse)
			}
		case NOT:
			require(1)
			x := stack.Pop()
			if x.Cmp(ethutil.BigFalse) > 0 {
				stack.Push(ethutil.BigFalse)
			} else {
				stack.Push(ethutil.BigTrue)
			}

			// 0x10 range
		case AND:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v & %v", y, x)

			stack.Push(base.And(y, x))
		case OR:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v | %v", y, x)

			stack.Push(base.Or(y, x))
		case XOR:
			require(2)
			x, y := stack.Popn()
			self.Printf(" %v ^ %v", y, x)

			stack.Push(base.Xor(y, x))
		case BYTE:
			require(2)
			val, th := stack.Popn()
			if th.Cmp(big.NewInt(32)) < 0 && th.Cmp(big.NewInt(int64(len(val.Bytes())))) < 0 {
				byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))
				stack.Push(byt)

				self.Printf(" => 0x%x", byt.Bytes())
			} else {
				stack.Push(ethutil.BigFalse)
			}
		case ADDMOD:
			require(3)

			x := stack.Pop()
			y := stack.Pop()
			z := stack.Pop()

			base.Add(x, y)
			base.Mod(base, z)

			ensure256(base)

			self.Printf(" = %v", base)

			stack.Push(base)
		case MULMOD:
			require(3)

			x := stack.Pop()
			y := stack.Pop()
			z := stack.Pop()

			base.Mul(x, y)
			base.Mod(base, z)

			ensure256(base)

			self.Printf(" = %v", base)

			stack.Push(base)

			// 0x20 range
		case SHA3:
			require(2)
			size, offset := stack.Popn()
			data := ethcrypto.Sha3Bin(mem.Get(offset.Int64(), size.Int64()))

			stack.Push(ethutil.BigD(data))

			self.Printf(" => %x", data)
			// 0x30 range
		case ADDRESS:
			stack.Push(ethutil.BigD(closure.Address()))

			self.Printf(" => %x", closure.Address())
		case BALANCE:
			require(1)

			addr := stack.Pop().Bytes()
			balance := self.env.State().GetBalance(addr)

			stack.Push(balance)

			self.Printf(" => %v (%x)", balance, addr)
		case ORIGIN:
			origin := self.env.Origin()

			stack.Push(ethutil.BigD(origin))

			self.Printf(" => %x", origin)
		case CALLER:
			caller := closure.caller.Address()
			stack.Push(ethutil.BigD(caller))

			self.Printf(" => %x", caller)
		case CALLVALUE:
			value := self.env.Value()

			stack.Push(value)

			self.Printf(" => %v", value)
		case CALLDATALOAD:
			require(1)
			var (
				offset  = stack.Pop()
				data    = make([]byte, 32)
				lenData = big.NewInt(int64(len(closure.Args)))
			)

			if lenData.Cmp(offset) >= 0 {
				length := new(big.Int).Add(offset, ethutil.Big32)
				length = ethutil.BigMin(length, lenData)

				copy(data, closure.Args[offset.Int64():length.Int64()])
			}

			self.Printf(" => 0x%x", data)

			stack.Push(ethutil.BigD(data))
		case CALLDATASIZE:
			l := int64(len(closure.Args))
			stack.Push(big.NewInt(l))

			self.Printf(" => %d", l)
		case CALLDATACOPY:
			var (
				size = int64(len(closure.Args))
				mOff = stack.Pop().Int64()
				cOff = stack.Pop().Int64()
				l    = stack.Pop().Int64()
			)

			if cOff > size {
				cOff = 0
				l = 0
			} else if cOff+l > size {
				l = 0
			}

			code := closure.Args[cOff : cOff+l]

			mem.Set(mOff, l, code)
		case CODESIZE:
			l := big.NewInt(int64(len(closure.Code)))
			stack.Push(l)

			self.Printf(" => %d", l)
		case CODECOPY:
			var (
				size = int64(len(closure.Code))
				mOff = stack.Pop().Int64()
				cOff = stack.Pop().Int64()
				l    = stack.Pop().Int64()
			)

			if cOff > size {
				cOff = 0
				l = 0
			} else if cOff+l > size {
				l = 0
			}

			code := closure.Code[cOff : cOff+l]

			mem.Set(mOff, l, code)
		case GASPRICE:
			stack.Push(closure.Price)

			self.Printf(" => %v", closure.Price)

			// 0x40 range
		case PREVHASH:
			prevHash := self.env.PrevHash()

			stack.Push(ethutil.BigD(prevHash))

			self.Printf(" => 0x%x", prevHash)
		case COINBASE:
			coinbase := self.env.Coinbase()

			stack.Push(ethutil.BigD(coinbase))

			self.Printf(" => 0x%x", coinbase)
		case TIMESTAMP:
			time := self.env.Time()

			stack.Push(big.NewInt(time))

			self.Printf(" => 0x%x", time)
		case NUMBER:
			number := self.env.BlockNumber()

			stack.Push(number)

			self.Printf(" => 0x%x", number.Bytes())
		case DIFFICULTY:
			difficulty := self.env.Difficulty()

			stack.Push(difficulty)

			self.Printf(" => 0x%x", difficulty.Bytes())
		case GASLIMIT:
			// TODO
			stack.Push(big.NewInt(0))

			// 0x50 range
		case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
			a := big.NewInt(int64(op) - int64(PUSH1) + 1)
			pc.Add(pc, ethutil.Big1)
			data := closure.Gets(pc, a)
			val := ethutil.BigD(data.Bytes())
			// Push value to stack
			stack.Push(val)
			pc.Add(pc, a.Sub(a, big.NewInt(1)))

			step += int(op) - int(PUSH1) + 1

			self.Printf(" => 0x%x", data.Bytes())
		case POP:
			require(1)
			stack.Pop()
		case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
			n := int(op - DUP1 + 1)
			stack.Dupn(n)

			self.Printf(" => [%d] 0x%x", n, stack.Peek().Bytes())
		case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
			n := int(op - SWAP1 + 1)
			x, y := stack.Swapn(n)

			self.Printf(" => [%d] %x [0] %x", n, x.Bytes(), y.Bytes())
		case MLOAD:
			require(1)
			offset := stack.Pop()
			val := ethutil.BigD(mem.Get(offset.Int64(), 32))
			stack.Push(val)

			self.Printf(" => 0x%x", val.Bytes())
		case MSTORE: // Store the value at stack top-1 in to memory at location stack top
			require(2)
			// Pop value of the stack
			val, mStart := stack.Popn()
			mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256))

			self.Printf(" => 0x%x", val)
		case MSTORE8:
			require(2)
			val, mStart := stack.Popn()
			//base.And(val, new(big.Int).SetInt64(0xff))
			//mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(base, 256))
			mem.store[mStart.Int64()] = byte(val.Int64() & 0xff)

			self.Printf(" => 0x%x", val)
		case SLOAD:
			require(1)
			loc := stack.Pop()
			val := closure.GetStorage(loc)

			stack.Push(val.BigInt())

			self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes())
		case SSTORE:
			require(2)
			val, loc := stack.Popn()
			closure.SetStorage(loc, ethutil.NewValue(val))

			closure.message.AddStorageChange(loc.Bytes())

			self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes())
		case JUMP:
			require(1)
			pc = stack.Pop()
			// Reduce pc by one because of the increment that's at the end of this for loop
			self.Printf(" ~> %v", pc).Endl()

			continue
		case JUMPI:
			require(2)
			cond, pos := stack.Popn()
			if cond.Cmp(ethutil.BigTrue) >= 0 {
				pc = pos

				self.Printf(" ~> %v (t)", pc).Endl()

				continue
			} else {
				self.Printf(" (f)")
			}
		case PC:
			stack.Push(pc)
		case MSIZE:
			stack.Push(big.NewInt(int64(mem.Len())))
		case GAS:
			stack.Push(closure.Gas)
			// 0x60 range
		case CREATE:
			require(3)

			var (
				err          error
				value        = stack.Pop()
				size, offset = stack.Popn()

				// Snapshot the current stack so we are able to
				// revert back to it later.
				snapshot = self.env.State().Copy()
			)

			// Generate a new address
			addr := ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce)
			for i := uint64(0); self.env.State().GetStateObject(addr) != nil; i++ {
				ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce+i)
			}
			closure.object.Nonce++

			self.Printf(" (*) %x", addr).Endl()

			msg := self.env.State().Manifest().AddMessage(&ethstate.Message{
				To: addr, From: closure.Address(),
				Origin: self.env.Origin(),
				Block:  self.env.BlockHash(), Timestamp: self.env.Time(), Coinbase: self.env.Coinbase(), Number: self.env.BlockNumber(),
				Value: value,
			})

			// Create a new contract
			contract := self.env.State().NewStateObject(addr)
			if contract.Balance.Cmp(value) >= 0 {
				closure.object.SubAmount(value)
				contract.AddAmount(value)

				// Set the init script
				initCode := mem.Get(offset.Int64(), size.Int64())
				msg.Input = initCode

				// Transfer all remaining gas to the new
				// contract so it may run the init script
				gas := new(big.Int).Set(closure.Gas)
				closure.UseGas(closure.Gas)

				// Create the closure
				c := NewClosure(msg, closure, contract, initCode, gas, closure.Price)
				// Call the closure and set the return value as
				// main script.
				contract.Code, _, err = c.Call(self, nil)
			} else {
				err = fmt.Errorf("Insufficient funds to transfer value. Req %v, has %v", value, closure.object.Balance)
			}

			if err != nil {
				stack.Push(ethutil.BigFalse)

				// Revert the state as it was before.
				self.env.State().Set(snapshot)

				self.Printf("CREATE err %v", err)
			} else {
				stack.Push(ethutil.BigD(addr))

				msg.Output = contract.Code
			}
			self.Endl()

			// Debug hook
			if self.Dbg != nil {
				self.Dbg.SetCode(closure.Code)
			}
		case CALL:
			require(7)

			self.Endl()

			gas := stack.Pop()
			// Pop gas and value of the stack.
			value, addr := stack.Popn()
			// Pop input size and offset
			inSize, inOffset := stack.Popn()
			// Pop return size and offset
			retSize, retOffset := stack.Popn()

			// Get the arguments from the memory
			args := mem.Get(inOffset.Int64(), inSize.Int64())

			msg := self.env.State().Manifest().AddMessage(&ethstate.Message{
				To: addr.Bytes(), From: closure.Address(),
				Input:  args,
				Origin: self.env.Origin(),
				Block:  self.env.BlockHash(), Timestamp: self.env.Time(), Coinbase: self.env.Coinbase(), Number: self.env.BlockNumber(),
				Value: value,
			})

			if closure.object.Balance.Cmp(value) < 0 {
				vmlogger.Debugf("Insufficient funds to transfer value. Req %v, has %v", value, closure.object.Balance)

				closure.ReturnGas(gas, nil)

				stack.Push(ethutil.BigFalse)
			} else {
				snapshot := self.env.State().Copy()

				stateObject := self.env.State().GetOrNewStateObject(addr.Bytes())

				closure.object.SubAmount(value)
				stateObject.AddAmount(value)

				// Create a new callable closure
				c := NewClosure(msg, closure, stateObject, stateObject.Code, gas, closure.Price)
				// Executer the closure and get the return value (if any)
				ret, _, err := c.Call(self, args)
				if err != nil {
					stack.Push(ethutil.BigFalse)

					vmlogger.Debugf("Closure execution failed. %v\n", err)

					self.env.State().Set(snapshot)
				} else {
					stack.Push(ethutil.BigTrue)

					mem.Set(retOffset.Int64(), retSize.Int64(), ret)
				}

				msg.Output = ret

				// Debug hook
				if self.Dbg != nil {
					self.Dbg.SetCode(closure.Code)
				}
			}
		case RETURN:
			require(2)
			size, offset := stack.Popn()
			ret := mem.Get(offset.Int64(), size.Int64())

			self.Printf(" => (%d) 0x%x", len(ret), ret).Endl()

			return closure.Return(ret), nil
		case SUICIDE:
			require(1)

			receiver := self.env.State().GetOrNewStateObject(stack.Pop().Bytes())

			receiver.AddAmount(closure.object.Balance)

			closure.object.MarkForDeletion()

			fallthrough
		case STOP: // Stop the closure
			self.Endl()

			return closure.Return(nil), nil
		default:
			vmlogger.Debugf("(pc) %-3v Invalid opcode %x\n", pc, op)

			return closure.Return(nil), fmt.Errorf("Invalid opcode %x", op)
		}

		pc.Add(pc, ethutil.Big1)

		self.Endl()

		if self.Dbg != nil {
			for _, instrNo := range self.Dbg.BreakPoints() {
				if pc.Cmp(big.NewInt(instrNo)) == 0 {
					self.Stepping = true

					if !self.Dbg.BreakHook(prevStep, op, mem, stack, closure.Object()) {
						return nil, nil
					}
				} else if self.Stepping {
					if !self.Dbg.StepHook(prevStep, op, mem, stack, closure.Object()) {
						return nil, nil
					}
				}
			}
		}

	}
}
Example #30
0
func (block *Block) Value() *ethutil.Value {
	return ethutil.NewValue([]interface{}{block.header(), block.rlpTxs(), block.rlpUncles()})
}