func (c *Closure) Gets(x, y *big.Int) *ethutil.Value { if x.Int64() >= int64(len(c.Code)) || y.Int64() >= int64(len(c.Code)) { return ethutil.NewValue(0) } partial := c.Code[x.Int64() : x.Int64()+y.Int64()] return ethutil.NewValue(partial) }
func ParanoiaCheck(t1 *Trie) (bool, *Trie) { t2 := New(ethutil.Config.Db, "") t1.NewIterator().Each(func(key string, v *ethutil.Value) { t2.Update(key, v.Str()) }) a := ethutil.NewValue(t2.Root).Bytes() b := ethutil.NewValue(t1.Root).Bytes() return bytes.Compare(a, b) == 0, t2 }
func (c *StateObject) GetInstr(pc *big.Int) *ethutil.Value { if int64(len(c.Code)-1) < pc.Int64() { return ethutil.NewValue(0) } return ethutil.NewValueFromBytes([]byte{c.Code[pc.Int64()]}) }
func (t *Trie) getState(node interface{}, key []int) interface{} { n := ethutil.NewValue(node) // Return the node if key is empty (= found) if len(key) == 0 || n.IsNil() || n.Len() == 0 { return node } currentNode := t.getNode(node) length := currentNode.Len() if length == 0 { return "" } else if length == 2 { // Decode the key k := CompactDecode(currentNode.Get(0).Str()) v := currentNode.Get(1).Raw() if len(key) >= len(k) && CompareIntSlice(k, key[:len(k)]) { return t.getState(v, key[len(k):]) } else { return "" } } else if length == 17 { return t.getState(currentNode.Get(key[0]).Raw(), key[1:]) } // It shouldn't come this far panic("unexpected return") }
// Write to the Ethereum network specifying the type of the message and // the data. Data can be of type RlpEncodable or []interface{}. Returns // nil or if something went wrong an error. func (self *Connection) Write(typ MsgType, v ...interface{}) error { var pack []byte slice := [][]interface{}{[]interface{}{byte(typ)}} for _, value := range v { if encodable, ok := value.(ethutil.RlpEncodeDecode); ok { slice = append(slice, encodable.RlpValue()) } else if raw, ok := value.([]interface{}); ok { slice = append(slice, raw) } else { panic(fmt.Sprintf("Unable to 'write' object of type %T", value)) } } // Encode the type and the (RLP encoded) data for sending over the wire encoded := ethutil.NewValue(slice).Encode() payloadLength := ethutil.NumberToBytes(uint32(len(encoded)), 32) // Write magic token and payload length (first 8 bytes) pack = append(MagicToken, payloadLength...) pack = append(pack, encoded...) // Write to the connection _, err := self.conn.Write(pack) if err != nil { return err } return nil }
func TestRun2(t *testing.T) { ethutil.ReadConfig("") db, _ := ethdb.NewMemDatabase() state := NewState(ethutil.NewTrie(db, "")) script := Compile([]string{ "PUSH", "0", "PUSH", "0", "TXSENDER", "PUSH", "10000000", "MKTX", }) fmt.Println(ethutil.NewValue(script)) tx := NewTransaction(ContractAddr, ethutil.Big("100000000000000000000000000000000000000000000000000"), script) fmt.Printf("contract addr %x\n", tx.Hash()[12:]) contract := MakeContract(tx, state) vm := &Vm{} vm.Process(contract, state, RuntimeVars{ address: tx.Hash()[12:], blockNumber: 1, sender: ethutil.FromHex("cd1722f3947def4cf144679da39c4c32bdc35681"), prevHash: ethutil.FromHex("5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6"), coinbase: ethutil.FromHex("2adc25665018aa1fe0e6bc666dac8fc2697ff9ba"), time: 1, diff: big.NewInt(256), txValue: tx.Value, txData: tx.Data, }) }
func (i *Console) PrintRoot() { root := ethutil.NewValue(i.trie.Root) if len(root.Bytes()) != 0 { fmt.Println(hex.EncodeToString(root.Bytes())) } else { fmt.Println(i.trie.Root) } }
func CreateTxSha(receipts Receipts) (sha []byte) { trie := ethtrie.New(ethutil.Config.Db, "") for i, receipt := range receipts { trie.Update(string(ethutil.NewValue(i).Encode()), string(ethutil.NewValue(receipt.RlpData()).Encode())) } switch trie.Root.(type) { case string: sha = []byte(trie.Root.(string)) case []byte: sha = trie.Root.([]byte) default: panic(fmt.Sprintf("invalid root type %T", trie.Root)) } return sha }
func (it *TrieIterator) Collect() [][]byte { if it.trie.Root == "" { return nil } it.getNode(ethutil.NewValue(it.trie.Root).Bytes()) return it.shas }
func (t *Trie) Get(key string) string { t.mut.RLock() defer t.mut.RUnlock() k := CompactHexDecode(key) c := ethutil.NewValue(t.getState(t.Root, k)) return c.Str() }
func CompileToValues(code []string) (script []*ethutil.Value) { script = make([]*ethutil.Value, len(code)) for i, val := range code { instr, _ := ethutil.CompileInstr(val) script[i] = ethutil.NewValue(instr) } return }
// Set the earliest and latest block for filtering. // -1 = latest block (i.e., the current block) // hash = particular hash from-to func (self *Filter) SetEarliestBlock(earliest interface{}) { e := ethutil.NewValue(earliest) // Check for -1 (latest) otherwise assume bytes if e.Int() == -1 { self.earliest = self.eth.BlockChain().CurrentBlock.Hash() } else if e.Len() > 0 { self.earliest = e.Bytes() } else { panic(fmt.Sprintf("earliest has to be either -1 or a valid hash: %v (%T)", e, e.Val)) } }
func (self *Filter) SetLatestBlock(latest interface{}) { l := ethutil.NewValue(latest) // Check for -1 (latest) otherwise assume bytes if l.Int() == -1 { self.latest = self.eth.BlockChain().CurrentBlock.Hash() } else if l.Len() > 0 { self.latest = l.Bytes() } else { panic(fmt.Sprintf("latest has to be either -1 or a valid hash: %v", l)) } }
func TestSnapshot(t *testing.T) { db, _ := ethdb.NewMemDatabase() ethutil.ReadConfig(".ethtest", "/tmp/ethtest", "") ethutil.Config.Db = db state := New(ethtrie.New(db, "")) stateObject := state.GetOrNewStateObject([]byte("aa")) stateObject.SetStorage(ethutil.Big("0"), ethutil.NewValue(42)) snapshot := state.Copy() stateObject = state.GetStateObject([]byte("aa")) stateObject.SetStorage(ethutil.Big("0"), ethutil.NewValue(43)) state.Set(snapshot) stateObject = state.GetStateObject([]byte("aa")) res := stateObject.GetStorage(ethutil.Big("0")) if !res.Cmp(ethutil.NewValue(42)) { t.Error("Expected storage 0 to be 42", res) } }
func (cache *Cache) PutValue(v interface{}, force bool) interface{} { value := ethutil.NewValue(v) enc := value.Encode() if len(enc) >= 32 || force { sha := ethcrypto.Sha3Bin(enc) cache.nodes[string(sha)] = NewNode(sha, value, true) cache.IsDirty = true return sha } return v }
// Iterate over each storage address and yield callback func (self *StateObject) EachStorage(cb ethtrie.EachCallback) { // First loop over the uncommit/cached values in storage for key, value := range self.storage { // XXX Most iterators Fns as it stands require encoded values encoded := ethutil.NewValue(value.Encode()) cb(key, encoded) } it := self.State.Trie.NewIterator() it.Each(func(key string, value *ethutil.Value) { // If it's cached don't call the callback. if self.storage[key] == nil { cb(key, value) } }) }
func (t *Trie) getNode(node interface{}) *ethutil.Value { n := ethutil.NewValue(node) if !n.Get(0).IsNil() { return n } str := n.Str() if len(str) == 0 { return n } else if len(str) < 32 { return ethutil.NewValueFromBytes([]byte(str)) } data := t.cache.Get(n.Bytes()) return data }
// The basic message writer takes care of writing data over the given // connection and does some basic error checking func WriteMessage(conn net.Conn, msg *Msg) error { var pack []byte // Encode the type and the (RLP encoded) data for sending over the wire encoded := ethutil.NewValue(append([]interface{}{byte(msg.Type)}, msg.Data.Slice()...)).Encode() payloadLength := ethutil.NumberToBytes(uint32(len(encoded)), 32) // Write magic token and payload length (first 8 bytes) pack = append(MagicToken, payloadLength...) pack = append(pack, encoded...) //fmt.Printf("payload %v (%v) %q\n", msg.Type, conn.RemoteAddr(), encoded) // Write to the connection _, err := conn.Write(pack) if err != nil { return err } return nil }
func TestNew(t *testing.T) { pipe := New(nil) var addr, privy, recp, data []byte var object *ethstate.StateObject var key *ethcrypto.KeyPair world := pipe.World() world.Get(addr) world.Coinbase() world.IsMining() world.IsListening() world.State() peers := world.Peers() peers.Len() // Shortcut functions pipe.Balance(addr) pipe.Nonce(addr) pipe.Block(addr) pipe.Storage(addr, addr) pipe.ToAddress(privy) pipe.Exists(addr) // Doesn't change state pipe.Execute(addr, nil, Val(0), Val(1000000), Val(10)) // Doesn't change state pipe.ExecuteObject(object, nil, Val(0), Val(1000000), Val(10)) conf := world.Config() namereg := conf.Get("NameReg") namereg.Storage(addr) var err error // Transact err = pipe.Transact(key, recp, ethutil.NewValue(0), ethutil.NewValue(0), ethutil.NewValue(0), nil) if err != nil { t.Error(err) } // Create err = pipe.Transact(key, nil, ethutil.NewValue(0), ethutil.NewValue(0), ethutil.NewValue(0), data) if err != nil { t.Error(err) } }
func CreateKeyPair(force bool) { data, _ := ethutil.Config.Db.Get([]byte("KeyRing")) if len(data) == 0 || force { pub, prv := secp256k1.GenerateKeyPair() addr := ethutil.Sha3Bin(pub[1:])[12:] fmt.Printf(` Generating new address and keypair. Please keep your keys somewhere save. Currently Ethereum(G) does not support exporting keys. ++++++++++++++++ KeyRing +++++++++++++++++++ addr: %x prvk: %x pubk: %x ++++++++++++++++++++++++++++++++++++++++++++ `, addr, prv, pub) keyRing := ethutil.NewValue([]interface{}{prv, addr, pub[1:]}) ethutil.Config.Db.Put([]byte("KeyRing"), keyRing.Encode()) } }
func (block *Block) PrintHash() { fmt.Println(block) fmt.Println(ethutil.NewValue(ethutil.Encode([]interface{}{block.PrevHash, block.UncleSha, block.Coinbase, block.state.trie.Root, block.TxSha, block.Difficulty, block.Time, block.Extra, block.Nonce}))) }
func (self *Pipe) Balance(addr []byte) *ethutil.Value { return ethutil.NewValue(self.World().safeGet(addr).Balance) }
func NewMessage(msgType MsgType, data interface{}) *Msg { return &Msg{ Type: msgType, Data: ethutil.NewValue(data), } }
func (tx *Transaction) Hash() []byte { data := []interface{}{tx.Nonce, tx.GasPrice, tx.Gas, tx.Recipient, tx.Value, tx.Data} return ethcrypto.Sha3Bin(ethutil.NewValue(data).Encode()) }
func (tx *Transaction) RlpValue() *ethutil.Value { return ethutil.NewValue(tx.RlpData()) }
// Creates an ethereum address given the bytes and the nonce func CreateAddress(b []byte, nonce uint64) []byte { return Sha3Bin(ethutil.NewValue([]interface{}{b, nonce}).Encode())[12:] }
func (k *KeyPair) RlpValue() *ethutil.Value { return ethutil.NewValue(k.PrivateKey) }
func (tx *Transaction) CreationAddress() []byte { return ethcrypto.Sha3Bin(ethutil.NewValue([]interface{}{tx.Sender(), tx.Nonce}).Encode())[12:] }
func (self *Vm) RunClosure(closure *Closure) (ret []byte, err error) { if self.Recoverable { // Recover from any require exception defer func() { if r := recover(); r != nil { ret = closure.Return(nil) err = fmt.Errorf("%v", r) vmlogger.Errorln("vm err", err) } }() } // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } // Don't bother with the execution if there's no code. if len(closure.Code) == 0 { return closure.Return(nil), nil } vmlogger.Debugf("(%s) %x gas: %v (d) %x\n", self.Fn, closure.Address(), closure.Gas, closure.Args) var ( op OpCode mem = &Memory{} stack = NewStack() pc = big.NewInt(0) step = 0 prevStep = 0 require = func(m int) { if stack.Len() < m { panic(fmt.Sprintf("%04v (%v) stack err size = %d, required = %d", pc, op, stack.Len(), m)) } } ) for { prevStep = step // The base for all big integer arithmetic base := new(big.Int) step++ // Get the memory location of pc val := closure.Get(pc) // Get the opcode (it must be an opcode!) op = OpCode(val.Uint()) // XXX Leave this Println intact. Don't change this to the log system. // Used for creating diffs between implementations if self.logTy == LogTyDiff { /* switch op { case STOP, RETURN, SUICIDE: closure.object.EachStorage(func(key string, value *ethutil.Value) { value.Decode() fmt.Printf("%x %x\n", new(big.Int).SetBytes([]byte(key)).Bytes(), value.Bytes()) }) } */ b := pc.Bytes() if len(b) == 0 { b = []byte{0} } fmt.Printf("%x %x %x %x\n", closure.Address(), b, []byte{byte(op)}, closure.Gas.Bytes()) } gas := new(big.Int) addStepGasUsage := func(amount *big.Int) { if amount.Cmp(ethutil.Big0) >= 0 { gas.Add(gas, amount) } } addStepGasUsage(GasStep) var newMemSize uint64 = 0 switch op { case STOP: gas.Set(ethutil.Big0) case SUICIDE: gas.Set(ethutil.Big0) case SLOAD: gas.Set(GasSLoad) case SSTORE: var mult *big.Int y, x := stack.Peekn() val := closure.GetStorage(x) if val.BigInt().Cmp(ethutil.Big0) == 0 && len(y.Bytes()) > 0 { mult = ethutil.Big2 } else if val.BigInt().Cmp(ethutil.Big0) != 0 && len(y.Bytes()) == 0 { mult = ethutil.Big0 } else { mult = ethutil.Big1 } gas = new(big.Int).Mul(mult, GasSStore) case BALANCE: gas.Set(GasBalance) case MSTORE: require(2) newMemSize = stack.Peek().Uint64() + 32 case MLOAD: require(1) newMemSize = stack.Peek().Uint64() + 32 case MSTORE8: require(2) newMemSize = stack.Peek().Uint64() + 1 case RETURN: require(2) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-2].Uint64() case SHA3: require(2) gas.Set(GasSha) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-2].Uint64() case CALLDATACOPY: require(3) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-3].Uint64() case CODECOPY: require(3) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-3].Uint64() case CALL: require(7) gas.Set(GasCall) addStepGasUsage(stack.data[stack.Len()-1]) x := stack.data[stack.Len()-6].Uint64() + stack.data[stack.Len()-7].Uint64() y := stack.data[stack.Len()-4].Uint64() + stack.data[stack.Len()-5].Uint64() newMemSize = uint64(math.Max(float64(x), float64(y))) case CREATE: require(3) gas.Set(GasCreate) newMemSize = stack.data[stack.Len()-2].Uint64() + stack.data[stack.Len()-3].Uint64() } newMemSize = (newMemSize + 31) / 32 * 32 if newMemSize > uint64(mem.Len()) { m := GasMemory.Uint64() * (newMemSize - uint64(mem.Len())) / 32 addStepGasUsage(big.NewInt(int64(m))) } if !closure.UseGas(gas) { err := fmt.Errorf("Insufficient gas for %v. req %v has %v", op, gas, closure.Gas) closure.UseGas(closure.Gas) return closure.Return(nil), err } self.Printf("(pc) %-3d -o- %-14s", pc, op.String()) self.Printf(" (g) %-3v (%v)", gas, closure.Gas) mem.Resize(newMemSize) switch op { case LOG: stack.Print() mem.Print() // 0x20 range case ADD: require(2) x, y := stack.Popn() self.Printf(" %v + %v", y, x) base.Add(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SUB: require(2) x, y := stack.Popn() self.Printf(" %v - %v", y, x) base.Sub(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MUL: require(2) x, y := stack.Popn() self.Printf(" %v * %v", y, x) base.Mul(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case DIV: require(2) x, y := stack.Popn() self.Printf(" %v / %v", y, x) if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SDIV: require(2) x, y := stack.Popn() self.Printf(" %v / %v", y, x) if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MOD: require(2) x, y := stack.Popn() self.Printf(" %v %% %v", y, x) base.Mod(y, x) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case SMOD: require(2) x, y := stack.Popn() self.Printf(" %v %% %v", y, x) base.Mod(y, x) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case EXP: require(2) x, y := stack.Popn() self.Printf(" %v ** %v", y, x) base.Exp(y, x, Pow256) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case NEG: require(1) base.Sub(Pow256, stack.Pop()) stack.Push(base) case LT: require(2) x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case GT: require(2) x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SLT: require(2) x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SGT: require(2) x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case EQ: require(2) x, y := stack.Popn() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case NOT: require(1) x := stack.Pop() if x.Cmp(ethutil.BigFalse) > 0 { stack.Push(ethutil.BigFalse) } else { stack.Push(ethutil.BigTrue) } // 0x10 range case AND: require(2) x, y := stack.Popn() self.Printf(" %v & %v", y, x) stack.Push(base.And(y, x)) case OR: require(2) x, y := stack.Popn() self.Printf(" %v | %v", y, x) stack.Push(base.Or(y, x)) case XOR: require(2) x, y := stack.Popn() self.Printf(" %v ^ %v", y, x) stack.Push(base.Xor(y, x)) case BYTE: require(2) val, th := stack.Popn() if th.Cmp(big.NewInt(32)) < 0 && th.Cmp(big.NewInt(int64(len(val.Bytes())))) < 0 { byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) stack.Push(byt) self.Printf(" => 0x%x", byt.Bytes()) } else { stack.Push(ethutil.BigFalse) } case ADDMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Add(x, y) base.Mod(base, z) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case MULMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Mul(x, y) base.Mod(base, z) ensure256(base) self.Printf(" = %v", base) stack.Push(base) // 0x20 range case SHA3: require(2) size, offset := stack.Popn() data := ethcrypto.Sha3Bin(mem.Get(offset.Int64(), size.Int64())) stack.Push(ethutil.BigD(data)) self.Printf(" => %x", data) // 0x30 range case ADDRESS: stack.Push(ethutil.BigD(closure.Address())) self.Printf(" => %x", closure.Address()) case BALANCE: require(1) addr := stack.Pop().Bytes() balance := self.env.State().GetBalance(addr) stack.Push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.Push(ethutil.BigD(origin)) self.Printf(" => %x", origin) case CALLER: caller := closure.caller.Address() stack.Push(ethutil.BigD(caller)) self.Printf(" => %x", caller) case CALLVALUE: value := self.env.Value() stack.Push(value) self.Printf(" => %v", value) case CALLDATALOAD: require(1) var ( offset = stack.Pop() data = make([]byte, 32) lenData = big.NewInt(int64(len(closure.Args))) ) if lenData.Cmp(offset) >= 0 { length := new(big.Int).Add(offset, ethutil.Big32) length = ethutil.BigMin(length, lenData) copy(data, closure.Args[offset.Int64():length.Int64()]) } self.Printf(" => 0x%x", data) stack.Push(ethutil.BigD(data)) case CALLDATASIZE: l := int64(len(closure.Args)) stack.Push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( size = int64(len(closure.Args)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Args[cOff : cOff+l] mem.Set(mOff, l, code) case CODESIZE: l := big.NewInt(int64(len(closure.Code))) stack.Push(l) self.Printf(" => %d", l) case CODECOPY: var ( size = int64(len(closure.Code)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Code[cOff : cOff+l] mem.Set(mOff, l, code) case GASPRICE: stack.Push(closure.Price) self.Printf(" => %v", closure.Price) // 0x40 range case PREVHASH: prevHash := self.env.PrevHash() stack.Push(ethutil.BigD(prevHash)) self.Printf(" => 0x%x", prevHash) case COINBASE: coinbase := self.env.Coinbase() stack.Push(ethutil.BigD(coinbase)) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.Push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.Push(number) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.Push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: // TODO stack.Push(big.NewInt(0)) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op) - int64(PUSH1) + 1) pc.Add(pc, ethutil.Big1) data := closure.Gets(pc, a) val := ethutil.BigD(data.Bytes()) // Push value to stack stack.Push(val) pc.Add(pc, a.Sub(a, big.NewInt(1))) step += int(op) - int(PUSH1) + 1 self.Printf(" => 0x%x", data.Bytes()) case POP: require(1) stack.Pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.Dupn(n) self.Printf(" => [%d] 0x%x", n, stack.Peek().Bytes()) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 1) x, y := stack.Swapn(n) self.Printf(" => [%d] %x [0] %x", n, x.Bytes(), y.Bytes()) case MLOAD: require(1) offset := stack.Pop() val := ethutil.BigD(mem.Get(offset.Int64(), 32)) stack.Push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top require(2) // Pop value of the stack val, mStart := stack.Popn() mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: require(2) val, mStart := stack.Popn() //base.And(val, new(big.Int).SetInt64(0xff)) //mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(base, 256)) mem.store[mStart.Int64()] = byte(val.Int64() & 0xff) self.Printf(" => 0x%x", val) case SLOAD: require(1) loc := stack.Pop() val := closure.GetStorage(loc) stack.Push(val.BigInt()) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case SSTORE: require(2) val, loc := stack.Popn() closure.SetStorage(loc, ethutil.NewValue(val)) closure.message.AddStorageChange(loc.Bytes()) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case JUMP: require(1) pc = stack.Pop() // Reduce pc by one because of the increment that's at the end of this for loop self.Printf(" ~> %v", pc).Endl() continue case JUMPI: require(2) cond, pos := stack.Popn() if cond.Cmp(ethutil.BigTrue) >= 0 { pc = pos self.Printf(" ~> %v (t)", pc).Endl() continue } else { self.Printf(" (f)") } case PC: stack.Push(pc) case MSIZE: stack.Push(big.NewInt(int64(mem.Len()))) case GAS: stack.Push(closure.Gas) // 0x60 range case CREATE: require(3) var ( err error value = stack.Pop() size, offset = stack.Popn() // Snapshot the current stack so we are able to // revert back to it later. snapshot = self.env.State().Copy() ) // Generate a new address addr := ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce) for i := uint64(0); self.env.State().GetStateObject(addr) != nil; i++ { ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce+i) } closure.object.Nonce++ self.Printf(" (*) %x", addr).Endl() msg := self.env.State().Manifest().AddMessage(ðstate.Message{ To: addr, From: closure.Address(), Origin: self.env.Origin(), Block: self.env.BlockHash(), Timestamp: self.env.Time(), Coinbase: self.env.Coinbase(), Number: self.env.BlockNumber(), Value: value, }) // Create a new contract contract := self.env.State().NewStateObject(addr) if contract.Balance.Cmp(value) >= 0 { closure.object.SubAmount(value) contract.AddAmount(value) // Set the init script initCode := mem.Get(offset.Int64(), size.Int64()) msg.Input = initCode // Transfer all remaining gas to the new // contract so it may run the init script gas := new(big.Int).Set(closure.Gas) closure.UseGas(closure.Gas) // Create the closure c := NewClosure(msg, closure, contract, initCode, gas, closure.Price) // Call the closure and set the return value as // main script. contract.Code, _, err = c.Call(self, nil) } else { err = fmt.Errorf("Insufficient funds to transfer value. Req %v, has %v", value, closure.object.Balance) } if err != nil { stack.Push(ethutil.BigFalse) // Revert the state as it was before. self.env.State().Set(snapshot) self.Printf("CREATE err %v", err) } else { stack.Push(ethutil.BigD(addr)) msg.Output = contract.Code } self.Endl() // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } case CALL: require(7) self.Endl() gas := stack.Pop() // Pop gas and value of the stack. value, addr := stack.Popn() // Pop input size and offset inSize, inOffset := stack.Popn() // Pop return size and offset retSize, retOffset := stack.Popn() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) msg := self.env.State().Manifest().AddMessage(ðstate.Message{ To: addr.Bytes(), From: closure.Address(), Input: args, Origin: self.env.Origin(), Block: self.env.BlockHash(), Timestamp: self.env.Time(), Coinbase: self.env.Coinbase(), Number: self.env.BlockNumber(), Value: value, }) if closure.object.Balance.Cmp(value) < 0 { vmlogger.Debugf("Insufficient funds to transfer value. Req %v, has %v", value, closure.object.Balance) closure.ReturnGas(gas, nil) stack.Push(ethutil.BigFalse) } else { snapshot := self.env.State().Copy() stateObject := self.env.State().GetOrNewStateObject(addr.Bytes()) closure.object.SubAmount(value) stateObject.AddAmount(value) // Create a new callable closure c := NewClosure(msg, closure, stateObject, stateObject.Code, gas, closure.Price) // Executer the closure and get the return value (if any) ret, _, err := c.Call(self, args) if err != nil { stack.Push(ethutil.BigFalse) vmlogger.Debugf("Closure execution failed. %v\n", err) self.env.State().Set(snapshot) } else { stack.Push(ethutil.BigTrue) mem.Set(retOffset.Int64(), retSize.Int64(), ret) } msg.Output = ret // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } } case RETURN: require(2) size, offset := stack.Popn() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => (%d) 0x%x", len(ret), ret).Endl() return closure.Return(ret), nil case SUICIDE: require(1) receiver := self.env.State().GetOrNewStateObject(stack.Pop().Bytes()) receiver.AddAmount(closure.object.Balance) closure.object.MarkForDeletion() fallthrough case STOP: // Stop the closure self.Endl() return closure.Return(nil), nil default: vmlogger.Debugf("(pc) %-3v Invalid opcode %x\n", pc, op) return closure.Return(nil), fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, ethutil.Big1) self.Endl() if self.Dbg != nil { for _, instrNo := range self.Dbg.BreakPoints() { if pc.Cmp(big.NewInt(instrNo)) == 0 { self.Stepping = true if !self.Dbg.BreakHook(prevStep, op, mem, stack, closure.Object()) { return nil, nil } } else if self.Stepping { if !self.Dbg.StepHook(prevStep, op, mem, stack, closure.Object()) { return nil, nil } } } } } }
func (block *Block) Value() *ethutil.Value { return ethutil.NewValue([]interface{}{block.header(), block.rlpTxs(), block.rlpUncles()}) }