Example #1
0
func (tx *Transaction) Sender() []byte {
	pubkey := tx.PublicKey()

	// Validate the returned key.
	// Return nil if public key isn't in full format
	if pubkey[0] != 4 {
		return nil
	}

	return ethutil.Sha3Bin(pubkey[1:])[12:]
}
Example #2
0
func (pow *EasyPow) Search(block *Block) []byte {
	r := rand.New(rand.NewSource(time.Now().UnixNano()))

	hash := block.HashNoNonce()
	diff := block.Difficulty
	for {
		sha := ethutil.Sha3Bin(big.NewInt(r.Int63()).Bytes())
		if pow.Verify(hash, diff, sha) {
			return sha
		}
	}

	return nil
}
Example #3
0
func (tx *Transaction) Hash() []byte {
	data := make([]interface{}, len(tx.Data))
	for i, val := range tx.Data {
		data[i] = val
	}

	preEnc := []interface{}{
		tx.Nonce,
		tx.Recipient,
		tx.Value,
		data,
	}

	return ethutil.Sha3Bin(ethutil.Encode(preEnc))
}
Example #4
0
func CreateKeyPair(force bool) {
	data, _ := ethutil.Config.Db.Get([]byte("KeyRing"))
	if len(data) == 0 || force {
		pub, prv := secp256k1.GenerateKeyPair()
		addr := ethutil.Sha3Bin(pub[1:])[12:]

		fmt.Printf(`
Generating new address and keypair.
Please keep your keys somewhere save.
Currently Ethereum(G) does not support
exporting keys.

++++++++++++++++ KeyRing +++++++++++++++++++
addr: %x
prvk: %x
pubk: %x
++++++++++++++++++++++++++++++++++++++++++++

`, addr, prv, pub)

		keyRing := ethutil.NewValue([]interface{}{prv, addr, pub[1:]})
		ethutil.Config.Db.Put([]byte("KeyRing"), keyRing.Encode())
	}
}
Example #5
0
package ethchain

import (
	"github.com/ethereum/eth-go/ethutil"
	"math/big"
)

/*
 * This is the special genesis block.
 */

var ZeroHash256 = make([]byte, 32)
var ZeroHash160 = make([]byte, 20)
var EmptyShaList = ethutil.Sha3Bin(ethutil.Encode([]interface{}{}))

var GenesisHeader = []interface{}{
	// Previous hash (none)
	//"",
	ZeroHash256,
	// Sha of uncles
	ethutil.Sha3Bin(ethutil.Encode([]interface{}{})),
	// Coinbase
	ZeroHash160,
	// Root state
	"",
	// Sha of transactions
	//EmptyShaList,
	ethutil.Sha3Bin(ethutil.Encode([]interface{}{})),
	// Difficulty
	ethutil.BigPow(2, 22),
	// Time
Example #6
0
func (block *Block) SetTransactions(txs []*Transaction) {
	block.transactions = txs

	block.TxSha = ethutil.Sha3Bin(ethutil.Encode(block.rlpTxs()))
}
Example #7
0
func (block *Block) SetUncles(uncles []*Block) {
	block.Uncles = uncles

	// Sha of the concatenated uncles
	block.UncleSha = ethutil.Sha3Bin(ethutil.Encode(block.rlpUncles()))
}
Example #8
0
func (block *Block) HashNoNonce() []byte {
	return ethutil.Sha3Bin(ethutil.Encode([]interface{}{block.PrevHash, block.UncleSha, block.Coinbase, block.state.trie.Root, block.TxSha, block.Difficulty, block.Time, block.Extra}))
}
Example #9
0
// Returns a hash of the block
func (block *Block) Hash() []byte {
	return ethutil.Sha3Bin(block.Value().Encode())
}
Example #10
0
func (vm *Vm) Process(contract *Contract, state *State, vars RuntimeVars) {
	vm.mem = make(map[string]*big.Int)
	vm.stack = NewStack()

	addr := vars.address // tx.Hash()[12:]
	// Instruction pointer
	pc := 0

	if contract == nil {
		fmt.Println("Contract not found")
		return
	}

	Pow256 := ethutil.BigPow(2, 256)

	if ethutil.Config.Debug {
		ethutil.Config.Log.Debugf("#   op\n")
	}

	stepcount := 0
	totalFee := new(big.Int)

out:
	for {
		stepcount++
		// The base big int for all calculations. Use this for any results.
		base := new(big.Int)
		val := contract.GetMem(pc)
		//fmt.Printf("%x = %d, %v %x\n", r, len(r), v, nb)
		op := OpCode(val.Uint())

		var fee *big.Int = new(big.Int)
		var fee2 *big.Int = new(big.Int)
		if stepcount > 16 {
			fee.Add(fee, StepFee)
		}

		// Calculate the fees
		switch op {
		case oSSTORE:
			y, x := vm.stack.Peekn()
			val := contract.Addr(ethutil.BigToBytes(x, 256))
			if val.IsEmpty() && len(y.Bytes()) > 0 {
				fee2.Add(DataFee, StoreFee)
			} else {
				fee2.Sub(DataFee, StoreFee)
			}
		case oSLOAD:
			fee.Add(fee, StoreFee)
		case oEXTRO, oBALANCE:
			fee.Add(fee, ExtroFee)
		case oSHA256, oRIPEMD160, oECMUL, oECADD, oECSIGN, oECRECOVER, oECVALID:
			fee.Add(fee, CryptoFee)
		case oMKTX:
			fee.Add(fee, ContractFee)
		}

		tf := new(big.Int).Add(fee, fee2)
		if contract.Amount.Cmp(tf) < 0 {
			fmt.Println("Insufficient fees to continue running the contract", tf, contract.Amount)
			break
		}
		// Add the fee to the total fee. It's subtracted when we're done looping
		totalFee.Add(totalFee, tf)

		if ethutil.Config.Debug {
			ethutil.Config.Log.Debugf("%-3d %-4s", pc, op.String())
		}

		switch op {
		case oSTOP:
			fmt.Println("")
			break out
		case oADD:
			x, y := vm.stack.Popn()
			// (x + y) % 2 ** 256
			base.Add(x, y)
			base.Mod(base, Pow256)
			// Pop result back on the stack
			vm.stack.Push(base)
		case oSUB:
			x, y := vm.stack.Popn()
			// (x - y) % 2 ** 256
			base.Sub(x, y)
			base.Mod(base, Pow256)
			// Pop result back on the stack
			vm.stack.Push(base)
		case oMUL:
			x, y := vm.stack.Popn()
			// (x * y) % 2 ** 256
			base.Mul(x, y)
			base.Mod(base, Pow256)
			// Pop result back on the stack
			vm.stack.Push(base)
		case oDIV:
			x, y := vm.stack.Popn()
			// floor(x / y)
			base.Div(x, y)
			// Pop result back on the stack
			vm.stack.Push(base)
		case oSDIV:
			x, y := vm.stack.Popn()
			// n > 2**255
			if x.Cmp(Pow256) > 0 {
				x.Sub(Pow256, x)
			}
			if y.Cmp(Pow256) > 0 {
				y.Sub(Pow256, y)
			}
			z := new(big.Int)
			z.Div(x, y)
			if z.Cmp(Pow256) > 0 {
				z.Sub(Pow256, z)
			}
			// Push result on to the stack
			vm.stack.Push(z)
		case oMOD:
			x, y := vm.stack.Popn()
			base.Mod(x, y)
			vm.stack.Push(base)
		case oSMOD:
			x, y := vm.stack.Popn()
			// n > 2**255
			if x.Cmp(Pow256) > 0 {
				x.Sub(Pow256, x)
			}
			if y.Cmp(Pow256) > 0 {
				y.Sub(Pow256, y)
			}
			z := new(big.Int)
			z.Mod(x, y)
			if z.Cmp(Pow256) > 0 {
				z.Sub(Pow256, z)
			}
			// Push result on to the stack
			vm.stack.Push(z)
		case oEXP:
			x, y := vm.stack.Popn()
			base.Exp(x, y, Pow256)

			vm.stack.Push(base)
		case oNEG:
			base.Sub(Pow256, vm.stack.Pop())
			vm.stack.Push(base)
		case oLT:
			x, y := vm.stack.Popn()
			// x < y
			if x.Cmp(y) < 0 {
				vm.stack.Push(ethutil.BigTrue)
			} else {
				vm.stack.Push(ethutil.BigFalse)
			}
		case oLE:
			x, y := vm.stack.Popn()
			// x <= y
			if x.Cmp(y) < 1 {
				vm.stack.Push(ethutil.BigTrue)
			} else {
				vm.stack.Push(ethutil.BigFalse)
			}
		case oGT:
			x, y := vm.stack.Popn()
			// x > y
			if x.Cmp(y) > 0 {
				vm.stack.Push(ethutil.BigTrue)
			} else {
				vm.stack.Push(ethutil.BigFalse)
			}
		case oGE:
			x, y := vm.stack.Popn()
			// x >= y
			if x.Cmp(y) > -1 {
				vm.stack.Push(ethutil.BigTrue)
			} else {
				vm.stack.Push(ethutil.BigFalse)
			}
		case oNOT:
			x, y := vm.stack.Popn()
			// x != y
			if x.Cmp(y) != 0 {
				vm.stack.Push(ethutil.BigTrue)
			} else {
				vm.stack.Push(ethutil.BigFalse)
			}
		case oMYADDRESS:
			vm.stack.Push(ethutil.BigD(addr))
		case oTXSENDER:
			vm.stack.Push(ethutil.BigD(vars.sender))
		case oTXVALUE:
			vm.stack.Push(vars.txValue)
		case oTXDATAN:
			vm.stack.Push(big.NewInt(int64(len(vars.txData))))
		case oTXDATA:
			v := vm.stack.Pop()
			// v >= len(data)
			if v.Cmp(big.NewInt(int64(len(vars.txData)))) >= 0 {
				vm.stack.Push(ethutil.Big("0"))
			} else {
				vm.stack.Push(ethutil.Big(vars.txData[v.Uint64()]))
			}
		case oBLK_PREVHASH:
			vm.stack.Push(ethutil.BigD(vars.prevHash))
		case oBLK_COINBASE:
			vm.stack.Push(ethutil.BigD(vars.coinbase))
		case oBLK_TIMESTAMP:
			vm.stack.Push(big.NewInt(vars.time))
		case oBLK_NUMBER:
			vm.stack.Push(big.NewInt(int64(vars.blockNumber)))
		case oBLK_DIFFICULTY:
			vm.stack.Push(vars.diff)
		case oBASEFEE:
			// e = 10^21
			e := big.NewInt(0).Exp(big.NewInt(10), big.NewInt(21), big.NewInt(0))
			d := new(big.Rat)
			d.SetInt(vars.diff)
			c := new(big.Rat)
			c.SetFloat64(0.5)
			// d = diff / 0.5
			d.Quo(d, c)
			// base = floor(d)
			base.Div(d.Num(), d.Denom())

			x := new(big.Int)
			x.Div(e, base)

			// x = floor(10^21 / floor(diff^0.5))
			vm.stack.Push(x)
		case oSHA256, oSHA3, oRIPEMD160:
			// This is probably save
			// ceil(pop / 32)
			length := int(math.Ceil(float64(vm.stack.Pop().Uint64()) / 32.0))
			// New buffer which will contain the concatenated popped items
			data := new(bytes.Buffer)
			for i := 0; i < length; i++ {
				// Encode the number to bytes and have it 32bytes long
				num := ethutil.NumberToBytes(vm.stack.Pop().Bytes(), 256)
				data.WriteString(string(num))
			}

			if op == oSHA256 {
				vm.stack.Push(base.SetBytes(ethutil.Sha256Bin(data.Bytes())))
			} else if op == oSHA3 {
				vm.stack.Push(base.SetBytes(ethutil.Sha3Bin(data.Bytes())))
			} else {
				vm.stack.Push(base.SetBytes(ethutil.Ripemd160(data.Bytes())))
			}
		case oECMUL:
			y := vm.stack.Pop()
			x := vm.stack.Pop()
			//n := vm.stack.Pop()

			//if ethutil.Big(x).Cmp(ethutil.Big(y)) {
			data := new(bytes.Buffer)
			data.WriteString(x.String())
			data.WriteString(y.String())
			if secp256k1.VerifyPubkeyValidity(data.Bytes()) == 1 {
				// TODO
			} else {
				// Invalid, push infinity
				vm.stack.Push(ethutil.Big("0"))
				vm.stack.Push(ethutil.Big("0"))
			}
			//} else {
			//	// Invalid, push infinity
			//	vm.stack.Push("0")
			//	vm.stack.Push("0")
			//}

		case oECADD:
		case oECSIGN:
		case oECRECOVER:
		case oECVALID:
		case oPUSH:
			pc++
			vm.stack.Push(contract.GetMem(pc).BigInt())
		case oPOP:
			// Pop current value of the stack
			vm.stack.Pop()
		case oDUP:
			// Dup top stack
			x := vm.stack.Pop()
			vm.stack.Push(x)
			vm.stack.Push(x)
		case oSWAP:
			// Swap two top most values
			x, y := vm.stack.Popn()
			vm.stack.Push(y)
			vm.stack.Push(x)
		case oMLOAD:
			x := vm.stack.Pop()
			vm.stack.Push(vm.mem[x.String()])
		case oMSTORE:
			x, y := vm.stack.Popn()
			vm.mem[x.String()] = y
		case oSLOAD:
			// Load the value in storage and push it on the stack
			x := vm.stack.Pop()
			// decode the object as a big integer
			decoder := contract.Addr(x.Bytes())
			if !decoder.IsNil() {
				vm.stack.Push(decoder.BigInt())
			} else {
				vm.stack.Push(ethutil.BigFalse)
			}
		case oSSTORE:
			// Store Y at index X
			y, x := vm.stack.Popn()
			addr := ethutil.BigToBytes(x, 256)
			fmt.Printf(" => %x (%v) @ %v", y.Bytes(), y, ethutil.BigD(addr))
			contract.SetAddr(addr, y)
			//contract.State().Update(string(idx), string(y))
		case oJMP:
			x := int(vm.stack.Pop().Uint64())
			// Set pc to x - 1 (minus one so the incrementing at the end won't effect it)
			pc = x
			pc--
		case oJMPI:
			x := vm.stack.Pop()
			// Set pc to x if it's non zero
			if x.Cmp(ethutil.BigFalse) != 0 {
				pc = int(x.Uint64())
				pc--
			}
		case oIND:
			vm.stack.Push(big.NewInt(int64(pc)))
		case oEXTRO:
			memAddr := vm.stack.Pop()
			contractAddr := vm.stack.Pop().Bytes()

			// Push the contract's memory on to the stack
			vm.stack.Push(contractMemory(state, contractAddr, memAddr))
		case oBALANCE:
			// Pushes the balance of the popped value on to the stack
			account := state.GetAccount(vm.stack.Pop().Bytes())
			vm.stack.Push(account.Amount)
		case oMKTX:
			addr, value := vm.stack.Popn()
			from, length := vm.stack.Popn()

			makeInlineTx(addr.Bytes(), value, from, length, contract, state)
		case oSUICIDE:
			recAddr := vm.stack.Pop().Bytes()
			// Purge all memory
			deletedMemory := contract.state.Purge()
			// Add refunds to the pop'ed address
			refund := new(big.Int).Mul(StoreFee, big.NewInt(int64(deletedMemory)))
			account := state.GetAccount(recAddr)
			account.Amount.Add(account.Amount, refund)
			// Update the refunding address
			state.UpdateAccount(recAddr, account)
			// Delete the contract
			state.trie.Update(string(addr), "")

			ethutil.Config.Log.Debugf("(%d) => %x\n", deletedMemory, recAddr)
			break out
		default:
			fmt.Printf("Invalid OPCODE: %x\n", op)
		}
		ethutil.Config.Log.Debugln("")
		//vm.stack.Print()
		pc++
	}

	state.UpdateContract(addr, contract)
}
Example #11
0
func (k *KeyPair) Address() []byte {
	return ethutil.Sha3Bin(k.PublicKey[1:])[12:]
}