func ecrecoverFunc(in []byte) []byte { in = common.RightPadBytes(in, 128) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := common.BytesToBig(in[64:96]) s := common.BytesToBig(in[96:128]) // Treat V as a 256bit integer vbig := common.Bytes2Big(in[32:64]) v := byte(vbig.Uint64()) if !crypto.ValidateSignatureValues(v, r, s) { glog.V(logger.Error).Infof("EC RECOVER FAIL: v, r or s value invalid") return nil } // v needs to be at the end and normalized for libsecp256k1 vbignormal := new(big.Int).Sub(vbig, big.NewInt(27)) vnormal := byte(vbignormal.Uint64()) rsv := append(in[64:128], vnormal) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) }
// make push instruction function func makePush(size uint64, bsize *big.Int) instrFn { return func(instr instruction, pc *uint64, env Environment, contract *Contract, memory *Memory, stack *stack) { byts := getData(contract.Code, new(big.Int).SetUint64(*pc+1), bsize) stack.push(common.Bytes2Big(byts)) *pc += size } }
func ecrecoverFunc(in []byte) []byte { // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) if len(in) < ecRecoverInputLength { return nil } // Treat V as a 256bit integer v := new(big.Int).Sub(common.Bytes2Big(in[32:64]), big.NewInt(27)) // Ethereum requires V to be either 0 or 1 => (27 || 28) if !(v.Cmp(Zero) == 0 || v.Cmp(One) == 0) { return nil } // v needs to be moved to the end rsv := append(in[64:128], byte(v.Uint64())) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) }
func opCalldataLoad(instr instruction, env Environment, context *Context, memory *Memory, stack *stack) { stack.push(common.Bytes2Big(getData(context.Input, stack.pop(), common.Big32))) }
func opCaller(instr instruction, env Environment, context *Context, memory *Memory, stack *stack) { stack.push(common.Bytes2Big(context.caller.Address().Bytes())) }
// CompileProgram compiles the given program and return an error when it fails func CompileProgram(program *Program) (err error) { if progStatus(atomic.LoadInt32(&program.status)) == progCompile { return nil } atomic.StoreInt32(&program.status, int32(progCompile)) defer func() { if err != nil { atomic.StoreInt32(&program.status, int32(progError)) } else { atomic.StoreInt32(&program.status, int32(progReady)) } }() if glog.V(logger.Debug) { glog.Infof("compiling %x\n", program.Id[:4]) tstart := time.Now() defer func() { glog.Infof("compiled %x instrc: %d time: %v\n", program.Id[:4], len(program.instructions), time.Since(tstart)) }() } // loop thru the opcodes and "compile" in to instructions for pc := uint64(0); pc < uint64(len(program.code)); pc++ { switch op := OpCode(program.code[pc]); op { case ADD: program.addInstr(op, pc, opAdd, nil) case SUB: program.addInstr(op, pc, opSub, nil) case MUL: program.addInstr(op, pc, opMul, nil) case DIV: program.addInstr(op, pc, opDiv, nil) case SDIV: program.addInstr(op, pc, opSdiv, nil) case MOD: program.addInstr(op, pc, opMod, nil) case SMOD: program.addInstr(op, pc, opSmod, nil) case EXP: program.addInstr(op, pc, opExp, nil) case SIGNEXTEND: program.addInstr(op, pc, opSignExtend, nil) case NOT: program.addInstr(op, pc, opNot, nil) case LT: program.addInstr(op, pc, opLt, nil) case GT: program.addInstr(op, pc, opGt, nil) case SLT: program.addInstr(op, pc, opSlt, nil) case SGT: program.addInstr(op, pc, opSgt, nil) case EQ: program.addInstr(op, pc, opEq, nil) case ISZERO: program.addInstr(op, pc, opIszero, nil) case AND: program.addInstr(op, pc, opAnd, nil) case OR: program.addInstr(op, pc, opOr, nil) case XOR: program.addInstr(op, pc, opXor, nil) case BYTE: program.addInstr(op, pc, opByte, nil) case ADDMOD: program.addInstr(op, pc, opAddmod, nil) case MULMOD: program.addInstr(op, pc, opMulmod, nil) case SHA3: program.addInstr(op, pc, opSha3, nil) case ADDRESS: program.addInstr(op, pc, opAddress, nil) case BALANCE: program.addInstr(op, pc, opBalance, nil) case ORIGIN: program.addInstr(op, pc, opOrigin, nil) case CALLER: program.addInstr(op, pc, opCaller, nil) case CALLVALUE: program.addInstr(op, pc, opCallValue, nil) case CALLDATALOAD: program.addInstr(op, pc, opCalldataLoad, nil) case CALLDATASIZE: program.addInstr(op, pc, opCalldataSize, nil) case CALLDATACOPY: program.addInstr(op, pc, opCalldataCopy, nil) case CODESIZE: program.addInstr(op, pc, opCodeSize, nil) case EXTCODESIZE: program.addInstr(op, pc, opExtCodeSize, nil) case CODECOPY: program.addInstr(op, pc, opCodeCopy, nil) case EXTCODECOPY: program.addInstr(op, pc, opExtCodeCopy, nil) case GASPRICE: program.addInstr(op, pc, opGasprice, nil) case BLOCKHASH: program.addInstr(op, pc, opBlockhash, nil) case COINBASE: program.addInstr(op, pc, opCoinbase, nil) case TIMESTAMP: program.addInstr(op, pc, opTimestamp, nil) case NUMBER: program.addInstr(op, pc, opNumber, nil) case DIFFICULTY: program.addInstr(op, pc, opDifficulty, nil) case GASLIMIT: program.addInstr(op, pc, opGasLimit, nil) case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: size := uint64(op - PUSH1 + 1) bytes := getData([]byte(program.code), new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size)) program.addInstr(op, pc, opPush, common.Bytes2Big(bytes)) pc += size case POP: program.addInstr(op, pc, opPop, nil) case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: program.addInstr(op, pc, opDup, big.NewInt(int64(op-DUP1+1))) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: program.addInstr(op, pc, opSwap, big.NewInt(int64(op-SWAP1+2))) case LOG0, LOG1, LOG2, LOG3, LOG4: program.addInstr(op, pc, opLog, big.NewInt(int64(op-LOG0))) case MLOAD: program.addInstr(op, pc, opMload, nil) case MSTORE: program.addInstr(op, pc, opMstore, nil) case MSTORE8: program.addInstr(op, pc, opMstore8, nil) case SLOAD: program.addInstr(op, pc, opSload, nil) case SSTORE: program.addInstr(op, pc, opSstore, nil) case JUMP: program.addInstr(op, pc, opJump, nil) case JUMPI: program.addInstr(op, pc, opJumpi, nil) case JUMPDEST: program.addInstr(op, pc, opJumpdest, nil) program.destinations[pc] = struct{}{} case PC: program.addInstr(op, pc, opPc, big.NewInt(int64(pc))) case MSIZE: program.addInstr(op, pc, opMsize, nil) case GAS: program.addInstr(op, pc, opGas, nil) case CREATE: program.addInstr(op, pc, opCreate, nil) case DELEGATECALL: // Instruction added regardless of homestead phase. // Homestead (and execution of the opcode) is checked during // runtime. program.addInstr(op, pc, opDelegateCall, nil) case CALL: program.addInstr(op, pc, opCall, nil) case CALLCODE: program.addInstr(op, pc, opCallCode, nil) case RETURN: program.addInstr(op, pc, opReturn, nil) case SUICIDE: program.addInstr(op, pc, opSuicide, nil) case STOP: // Stop the contract program.addInstr(op, pc, opStop, nil) default: program.addInstr(op, pc, nil, nil) } } optimiseProgram(program) return nil }
func (b Bloom) Big() *big.Int { return common.Bytes2Big(b[:]) }
func verifyTxFields(txTest TransactionTest, decodedTx *types.Transaction) (err error) { defer func() { if recovered := recover(); recovered != nil { buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] err = fmt.Errorf("%v\n%s", recovered, buf) } }() decodedSender, err := decodedTx.From() if err != nil { return err } expectedSender := mustConvertAddress(txTest.Sender) if expectedSender != decodedSender { return fmt.Errorf("Sender mismatch: %v %v", expectedSender, decodedSender) } expectedData := mustConvertBytes(txTest.Transaction.Data) if !bytes.Equal(expectedData, decodedTx.Payload) { return fmt.Errorf("Tx input data mismatch: %#v %#v", expectedData, decodedTx.Payload) } expectedGasLimit := mustConvertBigInt(txTest.Transaction.GasLimit, 16) if expectedGasLimit.Cmp(decodedTx.GasLimit) != 0 { return fmt.Errorf("GasLimit mismatch: %v %v", expectedGasLimit, decodedTx.GasLimit) } expectedGasPrice := mustConvertBigInt(txTest.Transaction.GasPrice, 16) if expectedGasPrice.Cmp(decodedTx.Price) != 0 { return fmt.Errorf("GasPrice mismatch: %v %v", expectedGasPrice, decodedTx.Price) } expectedNonce := mustConvertUint(txTest.Transaction.Nonce, 16) if expectedNonce != decodedTx.AccountNonce { return fmt.Errorf("Nonce mismatch: %v %v", expectedNonce, decodedTx.AccountNonce) } expectedR := common.Bytes2Big(mustConvertBytes(txTest.Transaction.R)) if expectedR.Cmp(decodedTx.R) != 0 { return fmt.Errorf("R mismatch: %v %v", expectedR, decodedTx.R) } expectedS := common.Bytes2Big(mustConvertBytes(txTest.Transaction.S)) if expectedS.Cmp(decodedTx.S) != 0 { return fmt.Errorf("S mismatch: %v %v", expectedS, decodedTx.S) } expectedV := mustConvertUint(txTest.Transaction.V, 16) if expectedV != uint64(decodedTx.V) { return fmt.Errorf("V mismatch: %v %v", expectedV, uint64(decodedTx.V)) } expectedTo := mustConvertAddress(txTest.Transaction.To) if decodedTx.Recipient == nil { if expectedTo != common.BytesToAddress([]byte{}) { // "empty" or "zero" address return fmt.Errorf("To mismatch when recipient is nil (contract creation): %v", expectedTo) } } else { if expectedTo != *decodedTx.Recipient { return fmt.Errorf("To mismatch: %v %v", expectedTo, *decodedTx.Recipient) } } expectedValue := mustConvertBigInt(txTest.Transaction.Value, 16) if expectedValue.Cmp(decodedTx.Amount) != 0 { return fmt.Errorf("Value mismatch: %v %v", expectedValue, decodedTx.Amount) } return nil }
// Run loops and evaluates the contract's code with the given input data func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, input, context) } } var ( codehash = crypto.Sha3Hash(context.Code) // codehash is used when doing jump dest caching program *Program ) if EnableJit { // Fetch program status. // * If ready run using JIT // * If unknown, compile in a seperate goroutine // * If forced wait for compilation and run once done if status := GetProgramStatus(codehash); status == progReady { return RunProgram(GetProgram(codehash), self.env, context, input) } else if status == progUnknown { if ForceJit { // Create and compile program program = NewProgram(context.Code) perr := CompileProgram(program) if perr == nil { return RunProgram(program, self.env, context, input) } glog.V(logger.Info).Infoln("error compiling program", err) } else { // create and compile the program. Compilation // is done in a seperate goroutine program = NewProgram(context.Code) go func() { err := CompileProgram(program) if err != nil { glog.V(logger.Info).Infoln("error compiling program", err) return } }() } } } var ( caller = context.caller code = context.Code value = context.value price = context.Price op OpCode // current opcode mem = NewMemory() // bound memory stack = newstack() // local stack statedb = self.env.State() // current state // For optimisation reason we're using uint64 as the program counter. // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible. pc = uint64(0) // program counter // jump evaluates and checks whether the given jump destination is a valid one // if valid move the `pc` otherwise return an error. jump = func(from uint64, to *big.Int) error { if !context.jumpdests.has(codehash, code, to) { nop := context.GetOp(to.Uint64()) return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } pc = to.Uint64() return nil } newMemSize *big.Int cost *big.Int ) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { self.log(pc, op, context.Gas, cost, mem, stack, context, err) } }() // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // Overhead of the atomic read might not be worth it /* TODO this still causes a few issues in the tests if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady { // move execution glog.V(logger.Info).Infoln("Moved execution to JIT") return runProgram(program, pc, mem, stack, self.env, context, input) } */ // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) // calculate the new memory size and gas price for the current executing opcode newMemSize, cost, err = calculateGasAndSize(self.env, context, caller, op, statedb, mem, stack) if err != nil { return nil, err } // Use the calculated gas. When insufficient gas is present, use all gas and return an // Out Of Gas error if !context.UseGas(cost) { return nil, OutOfGasError } // Resize the memory calculated previously mem.Resize(newMemSize.Uint64()) // Add a log message self.log(pc, op, context.Gas, cost, mem, stack, context, nil) switch op { case ADD: x, y := stack.pop(), stack.pop() base.Add(x, y) U256(base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() base.Sub(x, y) U256(base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() base.Mul(x, y) U256(base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case MOD: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case EXP: x, y := stack.pop(), stack.pop() base.Exp(x, y, Pow256) U256(base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) case LT: x, y := stack.pop(), stack.pop() // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } case AND: x, y := stack.pop(), stack.pop() stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } stack.push(base) case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(new(big.Int).Set(balance)) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) case CALLVALUE: stack.push(new(big.Int).Set(value)) case CALLDATALOAD: data := getData(input, stack.pop(), common.Big32) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(input)) stack.push(big.NewInt(l)) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(input, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) case GASPRICE: stack.push(new(big.Int).Set(context.Price)) case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) case TIMESTAMP: time := self.env.Time() stack.push(new(big.Int).Set(time)) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(new(big.Int).Set(difficulty)) case GASLIMIT: stack.push(new(big.Int).Set(self.env.GasLimit())) case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: size := uint64(op - PUSH1 + 1) byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size)) // push value to stack stack.push(common.Bytes2Big(byts)) pc += size case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) self.env.AddLog(log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) case MSTORE: // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) case SLOAD: loc := common.BigToHash(stack.pop()) val := statedb.GetState(context.Address(), loc).Big() stack.push(val) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, common.BigToHash(val)) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } case JUMPDEST: case PC: stack.push(new(big.Int).SetUint64(pc)) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(new(big.Int).Set(context.Gas)) case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.GetPtr(offset.Int64(), size.Int64()) return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context return context.Return(nil), nil default: return nil, fmt.Errorf("Invalid opcode %x", op) } pc++ } }
func opAddress(instr instruction, pc *uint64, env Environment, contract *Contract, memory *Memory, stack *stack) { stack.push(common.Bytes2Big(contract.Address().Bytes())) }
func (tx *Transaction) SetSignatureValues(sig []byte) error { tx.R = common.Bytes2Big(sig[:32]) tx.S = common.Bytes2Big(sig[32:64]) tx.V = sig[64] + 27 return nil }
func (self *Vm) Run(context *Context, callData []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) var ( caller = context.caller code = context.Code value = context.value price = context.Price ) self.Printf("(%d) (%x) %x (code=%d) gas: %v (d) %x", self.env.Depth(), caller.Address().Bytes()[:4], context.Address(), len(code), context.Gas, callData).Endl() // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if self.After != nil { self.After(context, err) } if err != nil { self.Printf(" %v", err).Endl() // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, callData, context) } } var ( op OpCode destinations = analyseJumpDests(context.Code) mem = NewMemory() stack = newStack() pc = new(big.Int) statedb = self.env.State() jump = func(from *big.Int, to *big.Int) error { nop := context.GetOp(to) if !destinations.Has(to) { return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } self.Printf(" ~> %v", to) pc = to self.Endl() return nil } ) // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) self.Printf("(pc) %-3d -o- %-14s (m) %-4d (s) %-4d ", pc, op.String(), mem.Len(), stack.len()) newMemSize, gas, err := self.calculateGasAndSize(context, caller, op, statedb, mem, stack) if err != nil { return nil, err } self.Printf("(g) %-3v (%v)", gas, context.Gas) if !context.UseGas(gas) { self.Endl() tmp := new(big.Int).Set(context.Gas) context.UseGas(context.Gas) return context.Return(nil), OOG(gas, tmp) } mem.Resize(newMemSize.Uint64()) switch op { // 0x20 range case ADD: x, y := stack.pop(), stack.pop() self.Printf(" %v + %v", y, x) base.Add(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() self.Printf(" %v - %v", y, x) base.Sub(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() self.Printf(" %v * %v", y, x) base.Mul(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() self.Printf(" %v / %v", x, y) if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v / %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.push(base) case MOD: x, y := stack.pop(), stack.pop() self.Printf(" %v %% %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) self.Printf(" = %v", base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v %% %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.push(base) case EXP: x, y := stack.pop(), stack.pop() self.Printf(" %v ** %v", x, y) base.Exp(x, y, Pow256) U256(base) self.Printf(" = %v", base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) self.Printf(" = %v", num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) //base.Sub(Pow256, stack.pop()).Sub(base, common.Big1) //base = U256(base) //stack.push(base) case LT: x, y := stack.pop(), stack.pop() self.Printf(" %v < %v", x, y) // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() self.Printf(" %v > %v", x, y) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v < %v", x, y) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v > %v", x, y) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } // 0x10 range case AND: x, y := stack.pop(), stack.pop() self.Printf(" %v & %v", y, x) stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() self.Printf(" %v | %v", x, y) stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() self.Printf(" %v ^ %v", x, y) stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } self.Printf(" => 0x%x", base.Bytes()) stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } self.Printf(" %v + %v %% %v = %v", x, y, z, base) stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } self.Printf(" %v + %v %% %v = %v", x, y, z, base) stack.push(base) // 0x20 range case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) self.Printf(" => (%v) %x", size, data) // 0x30 range case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) self.Printf(" => %x", context.Address()) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) self.Printf(" => %x", origin) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) self.Printf(" => %x", caller) case CALLVALUE: stack.push(value) self.Printf(" => %v", value) case CALLDATALOAD: data := getData(callData, stack.pop(), common.Big32) self.Printf(" => 0x%x", data) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(callData)) stack.push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(callData, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) self.Printf(" => [%v, %v, %v]", mOff, cOff, l) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) self.Printf(" => %d", l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) self.Printf(" => [%v, %v, %v] %x", mOff, cOff, l, codeCopy) case GASPRICE: stack.push(context.Price) self.Printf(" => %x", context.Price) // 0x40 range case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } self.Printf(" => 0x%x", stack.peek().Bytes()) case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: self.Printf(" => %v", self.env.GasLimit()) stack.push(self.env.GasLimit()) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op - PUSH1 + 1)) byts := getData(code, new(big.Int).Add(pc, big.NewInt(1)), a) // push value to stack stack.push(common.Bytes2Big(byts)) pc.Add(pc, a) self.Printf(" => 0x%x", byts) case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) self.Printf(" => [%d] 0x%x", n, stack.peek().Bytes()) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) self.Printf(" => [%d]", n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) //common.LeftPadBytes(stack.pop().Bytes(), 32) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) //log := &Log{context.Address(), topics, data, self.env.BlockNumber().Uint64()} self.env.AddLog(log) self.Printf(" => %v", log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) self.Printf(" => [%v] 0x%x", off, mem.store[off]) case SLOAD: loc := common.BigToHash(stack.pop()) val := common.Bytes2Big(statedb.GetState(context.Address(), loc)) stack.push(val) self.Printf(" {0x%x : 0x%x}", loc, val.Bytes()) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, val) self.Printf(" {0x%x : 0x%x}", loc, val.Bytes()) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } self.Printf(" ~> false") case JUMPDEST: case PC: //stack.push(big.NewInt(int64(pc))) stack.push(pc) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(context.Gas) self.Printf(" => %x", context.Gas) // 0x60 range case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) self.Endl() context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) self.Printf(" (*) 0x0 %v", suberr) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) self.Printf(" => %x", address).Endl() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) self.Printf("%v").Endl() } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } self.Printf("resume %x (%v)", context.Address(), context.Gas) case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => [%v, %v] (%d) 0x%x", offset, size, len(ret), ret).Endl() return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) self.Printf(" => (%x) %v", receiver.Address().Bytes()[:4], balance) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context self.Endl() return context.Return(nil), nil default: self.Printf("(pc) %-3v Invalid opcode %x\n", pc, op).Endl() return nil, fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, One) self.Endl() } }