func TestReset(t *testing.T) { trie := NewEmpty() vals := []struct{ k, v string }{ {"do", "verb"}, {"ether", "wookiedoo"}, {"horse", "stallion"}, } for _, val := range vals { trie.UpdateString(val.k, val.v) } trie.Commit() before := common.CopyBytes(trie.roothash) trie.UpdateString("should", "revert") trie.Hash() // Should have no effect trie.Hash() trie.Hash() // ### trie.Reset() after := common.CopyBytes(trie.roothash) if !bytes.Equal(before, after) { t.Errorf("expected roots to be equal. %x - %x", before, after) } }
func (b *memBatch) Put(key, value []byte) error { b.lock.Lock() defer b.lock.Unlock() b.writes = append(b.writes, kv{common.CopyBytes(key), common.CopyBytes(value)}) return nil }
func (self *StateObject) Copy() *StateObject { stateObject := NewStateObject(self.Address(), self.db) stateObject.balance.Set(self.balance) stateObject.codeHash = common.CopyBytes(self.codeHash) stateObject.nonce = self.nonce stateObject.trie = self.trie stateObject.code = common.CopyBytes(self.code) stateObject.initCode = common.CopyBytes(self.initCode) stateObject.storage = self.storage.Copy() stateObject.remove = self.remove stateObject.dirty = self.dirty stateObject.deleted = self.deleted return stateObject }
func NewTransaction(nonce uint64, to common.Address, amount, gasLimit, gasPrice *big.Int, data []byte) *Transaction { if len(data) > 0 { data = common.CopyBytes(data) } d := txdata{ AccountNonce: nonce, Recipient: &to, Payload: data, Amount: new(big.Int), GasLimit: new(big.Int), Price: new(big.Int), R: new(big.Int), S: new(big.Int), } if amount != nil { d.Amount.Set(amount) } if gasLimit != nil { d.GasLimit.Set(gasLimit) } if gasPrice != nil { d.Price.Set(gasPrice) } return &Transaction{data: d} }
func (db *MemDatabase) Put(key []byte, value []byte) error { db.lock.Lock() defer db.lock.Unlock() db.db[string(key)] = common.CopyBytes(value) return nil }
func (self *StateObject) Copy() *StateObject { stateObject := NewStateObject(self.Address(), self.db) stateObject.balance.Set(self.balance) stateObject.codeHash = common.CopyBytes(self.codeHash) stateObject.nonce = self.nonce if self.State != nil { stateObject.State = self.State.Copy() } stateObject.code = common.CopyBytes(self.code) stateObject.initCode = common.CopyBytes(self.initCode) stateObject.storage = self.storage.Copy() stateObject.gasPool.Set(self.gasPool) stateObject.remove = self.remove stateObject.dirty = self.dirty return stateObject }
// TryUpdate associates key with value in the trie. Subsequent calls to // Get will return value. If value has length zero, any existing value // is deleted from the trie and calls to Get will return nil. // // The value bytes must not be modified by the caller while they are // stored in the trie. // // If a node was not found in the database, a MissingNodeError is returned. func (t *SecureTrie) TryUpdate(key, value []byte) error { hk := t.hashKey(key) err := t.Trie.TryUpdate(hk, value) if err != nil { return err } t.secKeyCache[string(hk)] = common.CopyBytes(key) return nil }
func NewContractCreation(nonce uint64, amount, gasLimit, gasPrice *big.Int, data []byte) *Transaction { if len(data) > 0 { data = common.CopyBytes(data) } return &Transaction{data: txdata{ AccountNonce: nonce, Recipient: nil, Amount: new(big.Int).Set(amount), GasLimit: new(big.Int).Set(gasLimit), Price: new(big.Int).Set(gasPrice), Payload: data, R: new(big.Int), S: new(big.Int), }} }
// GenerateChain creates a chain of n blocks. The first block's // parent will be the provided parent. db is used to store // intermediate states and should contain the parent's state trie. // // The generator function is called with a new block generator for // every block. Any transactions and uncles added to the generator // become part of the block. If gen is nil, the blocks will be empty // and their coinbase will be the zero address. // // Blocks created by GenerateChain do not contain valid proof of work // values. Inserting them into BlockChain requires use of FakePow or // a similar non-validating proof of work implementation. func GenerateChain(config *ChainConfig, parent *types.Block, db ethdb.Database, n int, gen func(int, *BlockGen)) ([]*types.Block, []types.Receipts) { blocks, receipts := make(types.Blocks, n), make([]types.Receipts, n) genblock := func(i int, h *types.Header, statedb *state.StateDB) (*types.Block, types.Receipts) { b := &BlockGen{parent: parent, i: i, chain: blocks, header: h, statedb: statedb} // Mutate the state and block according to any hard-fork specs if config == nil { config = MakeChainConfig() } if daoBlock := config.DAOForkBlock; daoBlock != nil { limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if h.Number.Cmp(daoBlock) >= 0 && h.Number.Cmp(limit) < 0 { if config.DAOForkSupport { h.Extra = common.CopyBytes(params.DAOForkBlockExtra) } } } if config.DAOForkSupport && config.DAOForkBlock != nil && config.DAOForkBlock.Cmp(h.Number) == 0 { ApplyDAOHardFork(statedb) } // Execute any user modifications to the block and finalize it if gen != nil { gen(i, b) } AccumulateRewards(statedb, h, b.uncles) root, err := statedb.Commit() if err != nil { panic(fmt.Sprintf("state write error: %v", err)) } h.Root = root return types.NewBlock(h, b.txs, b.uncles, b.receipts), b.receipts } for i := 0; i < n; i++ { statedb, err := state.New(parent.Root(), db) if err != nil { panic(err) } header := makeHeader(parent, statedb) block, receipt := genblock(i, header, statedb) blocks[i] = block receipts[i] = receipt parent = block } return blocks, receipts }
// hashChildren replaces the children of a node with their hashes if the encoded // size of the child is larger than a hash, returning the collapsed node as well // as a replacement for the original node with the child hashes cached in. func (h *hasher) hashChildren(original node, db DatabaseWriter) (node, node, error) { var err error switch n := original.(type) { case shortNode: // Hash the short node's child, caching the newly hashed subtree cached := n cached.Key = common.CopyBytes(cached.Key) n.Key = compactEncode(n.Key) if _, ok := n.Val.(valueNode); !ok { if n.Val, cached.Val, err = h.hash(n.Val, db, false); err != nil { return n, original, err } } if n.Val == nil { n.Val = valueNode(nil) // Ensure that nil children are encoded as empty strings. } return n, cached, nil case fullNode: // Hash the full node's children, caching the newly hashed subtrees cached := fullNode{dirty: n.dirty} for i := 0; i < 16; i++ { if n.Children[i] != nil { if n.Children[i], cached.Children[i], err = h.hash(n.Children[i], db, false); err != nil { return n, original, err } } else { n.Children[i] = valueNode(nil) // Ensure that nil children are encoded as empty strings. } } cached.Children[16] = n.Children[16] if n.Children[16] == nil { n.Children[16] = valueNode(nil) } return n, cached, nil default: // Value and hash nodes don't have children so they're left as were return n, original, nil } }
func (self *ShortNode) Copy(t *Trie) Node { node := &ShortNode{t, nil, self.value.Copy(t), self.dirty} node.key = common.CopyBytes(self.key) node.dirty = true return node }
func (self *worker) commitNewWork() { self.mu.Lock() defer self.mu.Unlock() self.uncleMu.Lock() defer self.uncleMu.Unlock() self.currentMu.Lock() defer self.currentMu.Unlock() tstart := time.Now() parent := self.chain.CurrentBlock() tstamp := tstart.Unix() if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 { tstamp = parent.Time().Int64() + 1 } // this will ensure we're not going off too far in the future if now := time.Now().Unix(); tstamp > now+4 { wait := time.Duration(tstamp-now) * time.Second glog.V(logger.Info).Infoln("We are too far in the future. Waiting for", wait) time.Sleep(wait) } num := parent.Number() header := &types.Header{ ParentHash: parent.Hash(), Number: num.Add(num, common.Big1), Difficulty: core.CalcDifficulty(self.config, uint64(tstamp), parent.Time().Uint64(), parent.Number(), parent.Difficulty()), GasLimit: core.CalcGasLimit(parent), GasUsed: new(big.Int), Coinbase: self.coinbase, Extra: self.extra, Time: big.NewInt(tstamp), } // If we are care about TheDAO hard-fork check whether to override the extra-data or not if daoBlock := self.config.DAOForkBlock; daoBlock != nil { // Check whether the block is among the fork extra-override range limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 { // Depending whether we support or oppose the fork, override differently if self.config.DAOForkSupport { header.Extra = common.CopyBytes(params.DAOForkBlockExtra) } else if bytes.Compare(header.Extra, params.DAOForkBlockExtra) == 0 { header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data } } } previous := self.current // Could potentially happen if starting to mine in an odd state. err := self.makeCurrent(parent, header) if err != nil { glog.V(logger.Info).Infoln("Could not create new env for mining, retrying on next block.") return } // Create the current work task and check any fork transitions needed work := self.current if self.config.DAOForkSupport && self.config.DAOForkBlock != nil && self.config.DAOForkBlock.Cmp(header.Number) == 0 { core.ApplyDAOHardFork(work.state) } /* //approach 1 transactions := self.eth.TxPool().GetTransactions() sort.Sort(types.TxByNonce(transactions)) */ //approach 2 transactions := self.eth.TxPool().GetTransactions() types.SortByPriceAndNonce(transactions) /* // approach 3 // commit transactions for this run. txPerOwner := make(map[common.Address]types.Transactions) // Sort transactions by owner for _, tx := range self.eth.TxPool().GetTransactions() { from, _ := tx.From() // we can ignore the sender error txPerOwner[from] = append(txPerOwner[from], tx) } var ( singleTxOwner types.Transactions multiTxOwner types.Transactions ) // Categorise transactions by // 1. 1 owner tx per block // 2. multi txs owner per block for _, txs := range txPerOwner { if len(txs) == 1 { singleTxOwner = append(singleTxOwner, txs[0]) } else { multiTxOwner = append(multiTxOwner, txs...) } } sort.Sort(types.TxByPrice(singleTxOwner)) sort.Sort(types.TxByNonce(multiTxOwner)) transactions := append(singleTxOwner, multiTxOwner...) */ work.commitTransactions(self.mux, transactions, self.gasPrice, self.chain) self.eth.TxPool().RemoveTransactions(work.lowGasTxs) // compute uncles for the new block. var ( uncles []*types.Header badUncles []common.Hash ) for hash, uncle := range self.possibleUncles { if len(uncles) == 2 { break } if err := self.commitUncle(work, uncle.Header()); err != nil { if glog.V(logger.Ridiculousness) { glog.V(logger.Detail).Infof("Bad uncle found and will be removed (%x)\n", hash[:4]) glog.V(logger.Detail).Infoln(uncle) } badUncles = append(badUncles, hash) } else { glog.V(logger.Debug).Infof("commiting %x as uncle\n", hash[:4]) uncles = append(uncles, uncle.Header()) } } for _, hash := range badUncles { delete(self.possibleUncles, hash) } if atomic.LoadInt32(&self.mining) == 1 { // commit state root after all state transitions. core.AccumulateRewards(work.state, header, uncles) header.Root = work.state.IntermediateRoot() } // create the new block whose nonce will be mined. work.Block = types.NewBlock(header, work.txs, uncles, work.receipts) // We only care about logging if we're actually mining. if atomic.LoadInt32(&self.mining) == 1 { glog.V(logger.Info).Infof("commit new work on block %v with %d txs & %d uncles. Took %v\n", work.Block.Number(), work.tcount, len(uncles), time.Since(tstart)) self.logLocalMinedBlocks(work, previous) } self.push(work) }
func (self *HashNode) Copy(t *Trie) Node { return NewHash(common.CopyBytes(self.key), t) }
func (self *ShortNode) Copy(t *Trie) Node { node := &ShortNode{t, nil, self.value.Copy(t)} node.key = common.CopyBytes(self.key) return node }
func (w *memBatch) Put(key, value []byte) error { w.writes = append(w.writes, kv{key, common.CopyBytes(value)}) return nil }
func (b *Block) Extra() []byte { return common.CopyBytes(b.header.Extra) }
func NewReceipt(root []byte, cumalativeGasUsed *big.Int) *Receipt { return &Receipt{PostState: common.CopyBytes(root), CumulativeGasUsed: new(big.Int).Set(cumalativeGasUsed)} }
func (self *ValueNode) Copy(t *Trie) Node { return &ValueNode{t, common.CopyBytes(self.data), self.dirty} }
func (tx *Transaction) Data() []byte { return common.CopyBytes(tx.data.Payload) }