func TestLargeData(t *testing.T) { trie := NewEmpty() vals := make(map[string]*kv) for i := byte(0); i < 255; i++ { value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} value2 := &kv{common.LeftPadBytes([]byte{10, i}, 32), []byte{i}, false} trie.Update(value.k, value.v) trie.Update(value2.k, value2.v) vals[string(value.k)] = value vals[string(value2.k)] = value2 } it := trie.Iterator() for it.Next() { vals[string(it.Key)].t = true } var untouched []*kv for _, value := range vals { if !value.t { untouched = append(untouched, value) } } if len(untouched) > 0 { t.Errorf("Missed %d nodes", len(untouched)) for _, value := range untouched { t.Error(value) } } }
// packElement packs the given reflect value according to the abi specification in // t. func packElement(t Type, reflectValue reflect.Value) []byte { switch t.T { case IntTy, UintTy: return packNum(reflectValue, t.T) case StringTy: return packBytesSlice([]byte(reflectValue.String()), reflectValue.Len()) case AddressTy: if reflectValue.Kind() == reflect.Array { reflectValue = mustArrayToByteSlice(reflectValue) } return common.LeftPadBytes(reflectValue.Bytes(), 32) case BoolTy: if reflectValue.Bool() { return common.LeftPadBytes(common.Big1.Bytes(), 32) } else { return common.LeftPadBytes(common.Big0.Bytes(), 32) } case BytesTy: if reflectValue.Kind() == reflect.Array { reflectValue = mustArrayToByteSlice(reflectValue) } return packBytesSlice(reflectValue.Bytes(), reflectValue.Len()) case FixedBytesTy: if reflectValue.Kind() == reflect.Array { reflectValue = mustArrayToByteSlice(reflectValue) } return common.RightPadBytes(reflectValue.Bytes(), 32) } panic("abi: fatal error") }
// makeTestTrie create a sample test trie to test node-wise reconstruction. func makeTestTrie() (ethdb.Database, *Trie, map[string][]byte) { // Create an empty trie db, _ := ethdb.NewMemDatabase() trie, _ := New(common.Hash{}, db) // Fill it with some arbitrary data content := make(map[string][]byte) for i := byte(0); i < 255; i++ { // Map the same data under multiple keys key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i} content[string(key)] = val trie.Update(key, val) key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i} content[string(key)] = val trie.Update(key, val) // Add some other data to inflate th trie for j := byte(3); j < 13; j++ { key, val = common.LeftPadBytes([]byte{j, i}, 32), []byte{j, i} content[string(key)] = val trie.Update(key, val) } } trie.Commit() // Remove any potentially cached data from the test trie creation globalCache.Clear() // Return the generated trie return db, trie, content }
// XXX Could set directly. Testing requires resetting and setting of pre compiled contracts. func PrecompiledContracts() map[string]*PrecompiledAccount { return map[string]*PrecompiledAccount{ // ECRECOVER string(common.LeftPadBytes([]byte{1}, 20)): &PrecompiledAccount{func(l int) *big.Int { return params.EcrecoverGas }, ecrecoverFunc}, // SHA256 string(common.LeftPadBytes([]byte{2}, 20)): &PrecompiledAccount{func(l int) *big.Int { n := big.NewInt(int64(l+31) / 32) n.Mul(n, params.Sha256WordGas) return n.Add(n, params.Sha256Gas) }, sha256Func}, // RIPEMD160 string(common.LeftPadBytes([]byte{3}, 20)): &PrecompiledAccount{func(l int) *big.Int { n := big.NewInt(int64(l+31) / 32) n.Mul(n, params.Ripemd160WordGas) return n.Add(n, params.Ripemd160Gas) }, ripemd160Func}, string(common.LeftPadBytes([]byte{4}, 20)): &PrecompiledAccount{func(l int) *big.Int { n := big.NewInt(int64(l+31) / 32) n.Mul(n, params.IdentityWordGas) return n.Add(n, params.IdentityGas) }, memCpy}, } }
// Test the given input parameter `v` and checks if it matches certain // criteria // * Big integers are checks for ptr types and if the given value is // assignable // * Integer are checked for size // * Strings, addresses and bytes are checks for type and size func (t Type) pack(v interface{}) ([]byte, error) { value := reflect.ValueOf(v) switch kind := value.Kind(); kind { case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: if t.Type != ubig_t { return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v) } return packNum(value, t.T), nil case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: if t.Type != ubig_t { return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v) } return packNum(value, t.T), nil case reflect.Ptr: // If the value is a ptr do a assign check (only used by // big.Int for now) if t.Type == ubig_t && value.Type() != ubig_t { return nil, fmt.Errorf("type mismatch: %s for %T", t.Type, v) } return packNum(value, t.T), nil case reflect.String: if t.Size > -1 && value.Len() > t.Size { return nil, fmt.Errorf("%v out of bound. %d for %d", value.Kind(), value.Len(), t.Size) } return []byte(common.LeftPadString(t.String(), 32)), nil case reflect.Slice: if t.Size > -1 && value.Len() > t.Size { return nil, fmt.Errorf("%v out of bound. %d for %d", value.Kind(), value.Len(), t.Size) } // Address is a special slice. The slice acts as one rather than a list of elements. if t.T == AddressTy { return common.LeftPadBytes(v.([]byte), 32), nil } // Signed / Unsigned check if (t.T != IntTy && isSigned(value)) || (t.T == UintTy && isSigned(value)) { return nil, fmt.Errorf("slice of incompatible types.") } var packed []byte for i := 0; i < value.Len(); i++ { packed = append(packed, packNum(value.Index(i), t.T)...) } return packed, nil case reflect.Bool: if value.Bool() { return common.LeftPadBytes(common.Big1.Bytes(), 32), nil } else { return common.LeftPadBytes(common.Big0.Bytes(), 32), nil } } panic("unreached") }
// sha3 returns the canonical sha3 of the 32byte (padded) input func sha3(in ...[]byte) []byte { out := make([]byte, len(in)*32) for i, input := range in { copy(out[i*32:i*32+32], common.LeftPadBytes(input, 32)) } return crypto.Sha3(out) }
func ecrecoverFunc(in []byte) []byte { in = common.RightPadBytes(in, 128) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := common.BytesToBig(in[64:96]) s := common.BytesToBig(in[96:128]) // Treat V as a 256bit integer vbig := common.Bytes2Big(in[32:64]) v := byte(vbig.Uint64()) if !crypto.ValidateSignatureValues(v, r, s) { glog.V(logger.Error).Infof("EC RECOVER FAIL: v, r or s value invalid") return nil } // v needs to be at the end and normalized for libsecp256k1 vbignormal := new(big.Int).Sub(vbig, big.NewInt(27)) vnormal := byte(vbignormal.Uint64()) rsv := append(in[64:128], vnormal) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) }
func ecrecoverFunc(in []byte) []byte { // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) if len(in) < ecRecoverInputLength { return nil } // Treat V as a 256bit integer v := new(big.Int).Sub(common.Bytes2Big(in[32:64]), big.NewInt(27)) // Ethereum requires V to be either 0 or 1 => (27 || 28) if !(v.Cmp(Zero) == 0 || v.Cmp(One) == 0) { return nil } // v needs to be moved to the end rsv := append(in[64:128], byte(v.Uint64())) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) }
func checkLogs(tlog []Log, logs state.Logs) error { if len(tlog) != len(logs) { return fmt.Errorf("log length mismatch. Expected %d, got %d", len(tlog), len(logs)) } else { for i, log := range tlog { if common.HexToAddress(log.AddressF) != logs[i].Address { return fmt.Errorf("log address expected %v got %x", log.AddressF, logs[i].Address) } if !bytes.Equal(logs[i].Data, common.FromHex(log.DataF)) { return fmt.Errorf("log data expected %v got %x", log.DataF, logs[i].Data) } if len(log.TopicsF) != len(logs[i].Topics) { return fmt.Errorf("log topics length expected %d got %d", len(log.TopicsF), logs[i].Topics) } else { for j, topic := range log.TopicsF { if common.HexToHash(topic) != logs[i].Topics[j] { return fmt.Errorf("log topic[%d] expected %v got %x", j, topic, logs[i].Topics[j]) } } } genBloom := common.LeftPadBytes(types.LogsBloom(state.Logs{logs[i]}).Bytes(), 256) if !bytes.Equal(genBloom, common.Hex2Bytes(log.BloomF)) { return fmt.Errorf("bloom mismatch") } } } return nil }
func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) { if len(hash) != 32 { return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) } sig, err = secp256k1.Sign(hash, common.LeftPadBytes(prv.D.Bytes(), prv.Params().BitSize/8)) return }
func TestMarshalArrays(t *testing.T) { const definition = `[ { "name" : "bytes32", "constant" : false, "outputs": [ { "type": "bytes32" } ] }, { "name" : "bytes10", "constant" : false, "outputs": [ { "type": "bytes10" } ] } ]` abi, err := JSON(strings.NewReader(definition)) if err != nil { t.Fatal(err) } output := common.LeftPadBytes([]byte{1}, 32) var bytes10 [10]byte err = abi.Unpack(&bytes10, "bytes32", output) if err == nil || err.Error() != "abi: cannot unmarshal src (len=32) in to dst (len=10)" { t.Error("expected error or bytes32 not be assignable to bytes10:", err) } var bytes32 [32]byte err = abi.Unpack(&bytes32, "bytes32", output) if err != nil { t.Error("didn't expect error:", err) } if !bytes.Equal(bytes32[:], output) { t.Error("expected bytes32[31] to be 1 got", bytes32[31]) } type ( B10 [10]byte B32 [32]byte ) var b10 B10 err = abi.Unpack(&b10, "bytes32", output) if err == nil || err.Error() != "abi: cannot unmarshal src (len=32) in to dst (len=10)" { t.Error("expected error or bytes32 not be assignable to bytes10:", err) } var b32 B32 err = abi.Unpack(&b32, "bytes32", output) if err != nil { t.Error("didn't expect error:", err) } if !bytes.Equal(b32[:], output) { t.Error("expected bytes32[31] to be 1 got", bytes32[31]) } output[10] = 1 var shortAssignLong [32]byte err = abi.Unpack(&shortAssignLong, "bytes10", output) if err != nil { t.Error("didn't expect error:", err) } if !bytes.Equal(output, shortAssignLong[:]) { t.Errorf("expected %x to be %x", shortAssignLong, output) } }
func randomTrie(n int) (*Trie, map[string]*kv) { trie := new(Trie) vals := make(map[string]*kv) for i := byte(0); i < 100; i++ { value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false} trie.Update(value.k, value.v) trie.Update(value2.k, value2.v) vals[string(value.k)] = value vals[string(value2.k)] = value2 } for i := 0; i < n; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) vals[string(value.k)] = value } return trie, vals }
func opByte(instr instruction, env Environment, context *Context, memory *Memory, stack *stack) { th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byte := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) stack.push(byte) } else { stack.push(new(big.Int)) } }
func StdErrFormat(logs []StructLog) { fmt.Fprintf(os.Stderr, "VM STAT %d OPs\n", len(logs)) for _, log := range logs { fmt.Fprintf(os.Stderr, "PC %08d: %s GAS: %v COST: %v", log.Pc, log.Op, log.Gas, log.GasCost) if log.Err != nil { fmt.Fprintf(os.Stderr, " ERROR: %v", log.Err) } fmt.Fprintf(os.Stderr, "\n") fmt.Fprintln(os.Stderr, "STACK =", len(log.Stack)) for i := len(log.Stack) - 1; i >= 0; i-- { fmt.Fprintf(os.Stderr, "%04d: %x\n", len(log.Stack)-i-1, common.LeftPadBytes(log.Stack[i].Bytes(), 32)) } const maxMem = 10 addr := 0 fmt.Fprintln(os.Stderr, "MEM =", len(log.Memory)) for i := 0; i+16 <= len(log.Memory) && addr < maxMem; i += 16 { data := log.Memory[i : i+16] str := fmt.Sprintf("%04d: % x ", addr*16, data) for _, r := range data { if r == 0 { str += "." } else if unicode.IsPrint(rune(r)) { str += fmt.Sprintf("%s", string(r)) } else { str += "?" } } addr++ fmt.Fprintln(os.Stderr, str) } fmt.Fprintln(os.Stderr, "STORAGE =", len(log.Storage)) for h, item := range log.Storage { fmt.Fprintf(os.Stderr, "%x: %x\n", h, common.LeftPadBytes(item, 32)) } fmt.Fprintln(os.Stderr) } }
// makeTestTrie create a sample test trie to test node-wise reconstruction. func makeTestTrie() (ethdb.Database, *Trie, map[string][]byte) { // Create an empty trie db, _ := ethdb.NewMemDatabase() trie, _ := New(common.Hash{}, db) // Fill it with some arbitrary data content := make(map[string][]byte) for i := byte(0); i < 255; i++ { key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i} content[string(key)] = val trie.Update(key, val) key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i} content[string(key)] = val trie.Update(key, val) } trie.Commit() // Return the generated trie return db, trie, content }
func mapToTxParams(object map[string]interface{}) map[string]string { // Default values if object["from"] == nil { object["from"] = "" } if object["to"] == nil { object["to"] = "" } if object["value"] == nil { object["value"] = "" } if object["gas"] == nil { object["gas"] = "" } if object["gasPrice"] == nil { object["gasPrice"] = "" } var dataStr string var data []string if list, ok := object["data"].(*qml.List); ok { list.Convert(&data) } else if str, ok := object["data"].(string); ok { data = []string{str} } for _, str := range data { if common.IsHex(str) { str = str[2:] if len(str) != 64 { str = common.LeftPadString(str, 64) } } else { str = common.Bytes2Hex(common.LeftPadBytes(common.Big(str).Bytes(), 32)) } dataStr += str } object["data"] = dataStr conv := make(map[string]string) for key, value := range object { if v, ok := value.(string); ok { conv[key] = v } } return conv }
func S256(n *big.Int) []byte { sint := common.S256(n) ret := common.LeftPadBytes(sint.Bytes(), 32) if sint.Cmp(common.Big0) < 0 { for i, b := range ret { if b == 0 { ret[i] = 1 continue } break } } return ret }
// U256 will ensure unsigned 256bit on big nums func U256(n *big.Int) []byte { return common.LeftPadBytes(common.U256(n).Bytes(), 32) }
func (tx *Transaction) Curve() (v byte, r []byte, s []byte) { v = byte(tx.V) r = common.LeftPadBytes(tx.R.Bytes(), 32) s = common.LeftPadBytes(tx.S.Bytes(), 32) return }
func (self *Vm) Run(context *Context, callData []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) var ( caller = context.caller code = context.Code value = context.value price = context.Price ) self.Printf("(%d) (%x) %x (code=%d) gas: %v (d) %x", self.env.Depth(), caller.Address().Bytes()[:4], context.Address(), len(code), context.Gas, callData).Endl() // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if self.After != nil { self.After(context, err) } if err != nil { self.Printf(" %v", err).Endl() // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, callData, context) } } var ( op OpCode destinations = analyseJumpDests(context.Code) mem = NewMemory() stack = newStack() pc = new(big.Int) statedb = self.env.State() jump = func(from *big.Int, to *big.Int) error { nop := context.GetOp(to) if !destinations.Has(to) { return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } self.Printf(" ~> %v", to) pc = to self.Endl() return nil } ) // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) self.Printf("(pc) %-3d -o- %-14s (m) %-4d (s) %-4d ", pc, op.String(), mem.Len(), stack.len()) newMemSize, gas, err := self.calculateGasAndSize(context, caller, op, statedb, mem, stack) if err != nil { return nil, err } self.Printf("(g) %-3v (%v)", gas, context.Gas) if !context.UseGas(gas) { self.Endl() tmp := new(big.Int).Set(context.Gas) context.UseGas(context.Gas) return context.Return(nil), OOG(gas, tmp) } mem.Resize(newMemSize.Uint64()) switch op { // 0x20 range case ADD: x, y := stack.pop(), stack.pop() self.Printf(" %v + %v", y, x) base.Add(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() self.Printf(" %v - %v", y, x) base.Sub(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() self.Printf(" %v * %v", y, x) base.Mul(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() self.Printf(" %v / %v", x, y) if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v / %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.push(base) case MOD: x, y := stack.pop(), stack.pop() self.Printf(" %v %% %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) self.Printf(" = %v", base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v %% %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.push(base) case EXP: x, y := stack.pop(), stack.pop() self.Printf(" %v ** %v", x, y) base.Exp(x, y, Pow256) U256(base) self.Printf(" = %v", base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) self.Printf(" = %v", num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) //base.Sub(Pow256, stack.pop()).Sub(base, common.Big1) //base = U256(base) //stack.push(base) case LT: x, y := stack.pop(), stack.pop() self.Printf(" %v < %v", x, y) // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() self.Printf(" %v > %v", x, y) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v < %v", x, y) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v > %v", x, y) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } // 0x10 range case AND: x, y := stack.pop(), stack.pop() self.Printf(" %v & %v", y, x) stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() self.Printf(" %v | %v", x, y) stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() self.Printf(" %v ^ %v", x, y) stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } self.Printf(" => 0x%x", base.Bytes()) stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } self.Printf(" %v + %v %% %v = %v", x, y, z, base) stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } self.Printf(" %v + %v %% %v = %v", x, y, z, base) stack.push(base) // 0x20 range case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) self.Printf(" => (%v) %x", size, data) // 0x30 range case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) self.Printf(" => %x", context.Address()) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) self.Printf(" => %x", origin) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) self.Printf(" => %x", caller) case CALLVALUE: stack.push(value) self.Printf(" => %v", value) case CALLDATALOAD: data := getData(callData, stack.pop(), common.Big32) self.Printf(" => 0x%x", data) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(callData)) stack.push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(callData, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) self.Printf(" => [%v, %v, %v]", mOff, cOff, l) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) self.Printf(" => %d", l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) self.Printf(" => [%v, %v, %v] %x", mOff, cOff, l, codeCopy) case GASPRICE: stack.push(context.Price) self.Printf(" => %x", context.Price) // 0x40 range case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } self.Printf(" => 0x%x", stack.peek().Bytes()) case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: self.Printf(" => %v", self.env.GasLimit()) stack.push(self.env.GasLimit()) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op - PUSH1 + 1)) byts := getData(code, new(big.Int).Add(pc, big.NewInt(1)), a) // push value to stack stack.push(common.Bytes2Big(byts)) pc.Add(pc, a) self.Printf(" => 0x%x", byts) case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) self.Printf(" => [%d] 0x%x", n, stack.peek().Bytes()) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) self.Printf(" => [%d]", n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) //common.LeftPadBytes(stack.pop().Bytes(), 32) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) //log := &Log{context.Address(), topics, data, self.env.BlockNumber().Uint64()} self.env.AddLog(log) self.Printf(" => %v", log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) self.Printf(" => [%v] 0x%x", off, mem.store[off]) case SLOAD: loc := common.BigToHash(stack.pop()) val := common.Bytes2Big(statedb.GetState(context.Address(), loc)) stack.push(val) self.Printf(" {0x%x : 0x%x}", loc, val.Bytes()) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, val) self.Printf(" {0x%x : 0x%x}", loc, val.Bytes()) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } self.Printf(" ~> false") case JUMPDEST: case PC: //stack.push(big.NewInt(int64(pc))) stack.push(pc) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(context.Gas) self.Printf(" => %x", context.Gas) // 0x60 range case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) self.Endl() context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) self.Printf(" (*) 0x0 %v", suberr) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) self.Printf(" => %x", address).Endl() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) self.Printf("%v").Endl() } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } self.Printf("resume %x (%v)", context.Address(), context.Gas) case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => [%v, %v] (%d) 0x%x", offset, size, len(ret), ret).Endl() return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) self.Printf(" => (%x) %v", receiver.Address().Bytes()[:4], balance) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context self.Endl() return context.Return(nil), nil default: self.Printf("(pc) %-3v Invalid opcode %x\n", pc, op).Endl() return nil, fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, One) self.Endl() } }
func RunVmTest(p string, t *testing.T) { tests := make(map[string]VmTest) helper.CreateFileTests(t, p, &tests) for name, test := range tests { /* vm.Debug = true glog.SetV(4) glog.SetToStderr(true) if name != "stackLimitPush32_1024" { continue } */ db, _ := ethdb.NewMemDatabase() statedb := state.New(common.Hash{}, db) for addr, account := range test.Pre { obj := StateObjectFromAccount(db, addr, account) statedb.SetStateObject(obj) for a, v := range account.Storage { obj.SetState(common.HexToHash(a), common.NewValue(helper.FromHex(v))) } } // XXX Yeah, yeah... env := make(map[string]string) env["currentCoinbase"] = test.Env.CurrentCoinbase env["currentDifficulty"] = test.Env.CurrentDifficulty env["currentGasLimit"] = test.Env.CurrentGasLimit env["currentNumber"] = test.Env.CurrentNumber env["previousHash"] = test.Env.PreviousHash if n, ok := test.Env.CurrentTimestamp.(float64); ok { env["currentTimestamp"] = strconv.Itoa(int(n)) } else { env["currentTimestamp"] = test.Env.CurrentTimestamp.(string) } var ( ret []byte gas *big.Int err error logs state.Logs ) isVmTest := len(test.Exec) > 0 if isVmTest { ret, logs, gas, err = helper.RunVm(statedb, env, test.Exec) } else { ret, logs, gas, err = helper.RunState(statedb, env, test.Transaction) } rexp := helper.FromHex(test.Out) if bytes.Compare(rexp, ret) != 0 { t.Errorf("%s's return failed. Expected %x, got %x\n", name, rexp, ret) } if isVmTest { if len(test.Gas) == 0 && err == nil { t.Errorf("%s's gas unspecified, indicating an error. VM returned (incorrectly) successfull", name) } else { gexp := common.Big(test.Gas) if gexp.Cmp(gas) != 0 { t.Errorf("%s's gas failed. Expected %v, got %v\n", name, gexp, gas) } } } for addr, account := range test.Post { obj := statedb.GetStateObject(common.HexToAddress(addr)) if obj == nil { continue } if len(test.Exec) == 0 { if obj.Balance().Cmp(common.Big(account.Balance)) != 0 { t.Errorf("%s's : (%x) balance failed. Expected %v, got %v => %v\n", name, obj.Address().Bytes()[:4], account.Balance, obj.Balance(), new(big.Int).Sub(common.Big(account.Balance), obj.Balance())) } if obj.Nonce() != common.String2Big(account.Nonce).Uint64() { t.Errorf("%s's : (%x) nonce failed. Expected %v, got %v\n", name, obj.Address().Bytes()[:4], account.Nonce, obj.Nonce()) } } for addr, value := range account.Storage { v := obj.GetState(common.HexToHash(addr)).Bytes() vexp := helper.FromHex(value) if bytes.Compare(v, vexp) != 0 { t.Errorf("%s's : (%x: %s) storage failed. Expected %x, got %x (%v %v)\n", name, obj.Address().Bytes()[0:4], addr, vexp, v, common.BigD(vexp), common.BigD(v)) } } } if !isVmTest { statedb.Sync() //if !bytes.Equal(common.Hex2Bytes(test.PostStateRoot), statedb.Root()) { if common.HexToHash(test.PostStateRoot) != statedb.Root() { t.Errorf("%s's : Post state root error. Expected %s, got %x", name, test.PostStateRoot, statedb.Root()) } } if len(test.Logs) > 0 { if len(test.Logs) != len(logs) { t.Errorf("log length mismatch. Expected %d, got %d", len(test.Logs), len(logs)) } else { for i, log := range test.Logs { if common.HexToAddress(log.AddressF) != logs[i].Address { t.Errorf("'%s' log address expected %v got %x", name, log.AddressF, logs[i].Address) } if !bytes.Equal(logs[i].Data, helper.FromHex(log.DataF)) { t.Errorf("'%s' log data expected %v got %x", name, log.DataF, logs[i].Data) } if len(log.TopicsF) != len(logs[i].Topics) { t.Errorf("'%s' log topics length expected %d got %d", name, len(log.TopicsF), logs[i].Topics) } else { for j, topic := range log.TopicsF { if common.HexToHash(topic) != logs[i].Topics[j] { t.Errorf("'%s' log topic[%d] expected %v got %x", name, j, topic, logs[i].Topics[j]) } } } genBloom := common.LeftPadBytes(types.LogsBloom(state.Logs{logs[i]}).Bytes(), 256) if !bytes.Equal(genBloom, common.Hex2Bytes(log.BloomF)) { t.Errorf("'%s' bloom mismatch", name) } } } } //fmt.Println(string(statedb.Dump())) } logger.Flush() }
func (tx *Transaction) GetSignatureValues() (v byte, r []byte, s []byte) { v = byte(tx.V) r = common.LeftPadBytes(tx.R.Bytes(), 32) s = common.LeftPadBytes(tx.S.Bytes(), 32) return }
func ripemd160Func(in []byte) []byte { return common.LeftPadBytes(crypto.Ripemd160(in), 32) }
// quick helper padding func pad(input []byte, size int, left bool) []byte { if left { return common.LeftPadBytes(input, size) } return common.RightPadBytes(input, size) }
func TestMethodPack(t *testing.T) { abi, err := JSON(strings.NewReader(jsondata2)) if err != nil { t.Fatal(err) } sig := abi.Methods["slice"].Id() sig = append(sig, common.LeftPadBytes([]byte{32}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) packed, err := abi.Pack("slice", []uint32{1, 2}) if err != nil { t.Error(err) } if !bytes.Equal(packed, sig) { t.Errorf("expected %x got %x", sig, packed) } var addrA, addrB = common.Address{1}, common.Address{2} sig = abi.Methods["sliceAddress"].Id() sig = append(sig, common.LeftPadBytes([]byte{32}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes(addrA[:], 32)...) sig = append(sig, common.LeftPadBytes(addrB[:], 32)...) packed, err = abi.Pack("sliceAddress", []common.Address{addrA, addrB}) if err != nil { t.Fatal(err) } if !bytes.Equal(packed, sig) { t.Errorf("expected %x got %x", sig, packed) } var addrC, addrD = common.Address{3}, common.Address{4} sig = abi.Methods["sliceMultiAddress"].Id() sig = append(sig, common.LeftPadBytes([]byte{64}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{160}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes(addrA[:], 32)...) sig = append(sig, common.LeftPadBytes(addrB[:], 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes(addrC[:], 32)...) sig = append(sig, common.LeftPadBytes(addrD[:], 32)...) packed, err = abi.Pack("sliceMultiAddress", []common.Address{addrA, addrB}, []common.Address{addrC, addrD}) if err != nil { t.Fatal(err) } if !bytes.Equal(packed, sig) { t.Errorf("expected %x got %x", sig, packed) } sig = abi.Methods["slice256"].Id() sig = append(sig, common.LeftPadBytes([]byte{32}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) packed, err = abi.Pack("slice256", []*big.Int{big.NewInt(1), big.NewInt(2)}) if err != nil { t.Error(err) } if !bytes.Equal(packed, sig) { t.Errorf("expected %x got %x", sig, packed) } }
// Run loops and evaluates the contract's code with the given input data func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, input, context) } } var ( codehash = crypto.Sha3Hash(context.Code) // codehash is used when doing jump dest caching program *Program ) if EnableJit { // Fetch program status. // * If ready run using JIT // * If unknown, compile in a seperate goroutine // * If forced wait for compilation and run once done if status := GetProgramStatus(codehash); status == progReady { return RunProgram(GetProgram(codehash), self.env, context, input) } else if status == progUnknown { if ForceJit { // Create and compile program program = NewProgram(context.Code) perr := CompileProgram(program) if perr == nil { return RunProgram(program, self.env, context, input) } glog.V(logger.Info).Infoln("error compiling program", err) } else { // create and compile the program. Compilation // is done in a seperate goroutine program = NewProgram(context.Code) go func() { err := CompileProgram(program) if err != nil { glog.V(logger.Info).Infoln("error compiling program", err) return } }() } } } var ( caller = context.caller code = context.Code value = context.value price = context.Price op OpCode // current opcode mem = NewMemory() // bound memory stack = newstack() // local stack statedb = self.env.State() // current state // For optimisation reason we're using uint64 as the program counter. // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible. pc = uint64(0) // program counter // jump evaluates and checks whether the given jump destination is a valid one // if valid move the `pc` otherwise return an error. jump = func(from uint64, to *big.Int) error { if !context.jumpdests.has(codehash, code, to) { nop := context.GetOp(to.Uint64()) return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } pc = to.Uint64() return nil } newMemSize *big.Int cost *big.Int ) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { self.log(pc, op, context.Gas, cost, mem, stack, context, err) } }() // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // Overhead of the atomic read might not be worth it /* TODO this still causes a few issues in the tests if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady { // move execution glog.V(logger.Info).Infoln("Moved execution to JIT") return runProgram(program, pc, mem, stack, self.env, context, input) } */ // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) // calculate the new memory size and gas price for the current executing opcode newMemSize, cost, err = calculateGasAndSize(self.env, context, caller, op, statedb, mem, stack) if err != nil { return nil, err } // Use the calculated gas. When insufficient gas is present, use all gas and return an // Out Of Gas error if !context.UseGas(cost) { return nil, OutOfGasError } // Resize the memory calculated previously mem.Resize(newMemSize.Uint64()) // Add a log message self.log(pc, op, context.Gas, cost, mem, stack, context, nil) switch op { case ADD: x, y := stack.pop(), stack.pop() base.Add(x, y) U256(base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() base.Sub(x, y) U256(base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() base.Mul(x, y) U256(base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case MOD: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case EXP: x, y := stack.pop(), stack.pop() base.Exp(x, y, Pow256) U256(base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) case LT: x, y := stack.pop(), stack.pop() // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } case AND: x, y := stack.pop(), stack.pop() stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } stack.push(base) case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(new(big.Int).Set(balance)) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) case CALLVALUE: stack.push(new(big.Int).Set(value)) case CALLDATALOAD: data := getData(input, stack.pop(), common.Big32) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(input)) stack.push(big.NewInt(l)) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(input, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) case GASPRICE: stack.push(new(big.Int).Set(context.Price)) case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) case TIMESTAMP: time := self.env.Time() stack.push(new(big.Int).Set(time)) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(new(big.Int).Set(difficulty)) case GASLIMIT: stack.push(new(big.Int).Set(self.env.GasLimit())) case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: size := uint64(op - PUSH1 + 1) byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size)) // push value to stack stack.push(common.Bytes2Big(byts)) pc += size case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) self.env.AddLog(log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) case MSTORE: // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) case SLOAD: loc := common.BigToHash(stack.pop()) val := statedb.GetState(context.Address(), loc).Big() stack.push(val) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, common.BigToHash(val)) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } case JUMPDEST: case PC: stack.push(new(big.Int).SetUint64(pc)) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(new(big.Int).Set(context.Gas)) case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.GetPtr(offset.Int64(), size.Int64()) return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context return context.Return(nil), nil default: return nil, fmt.Errorf("Invalid opcode %x", op) } pc++ } }
func RunVmTest(r io.Reader) (failed int) { tests := make(map[string]VmTest) data, _ := ioutil.ReadAll(r) err := json.Unmarshal(data, &tests) if err != nil { log.Fatalln(err) } vm.Debug = true glog.SetV(4) glog.SetToStderr(true) for name, test := range tests { db, _ := ethdb.NewMemDatabase() statedb := state.New(common.Hash{}, db) for addr, account := range test.Pre { obj := StateObjectFromAccount(db, addr, account) statedb.SetStateObject(obj) } env := make(map[string]string) env["currentCoinbase"] = test.Env.CurrentCoinbase env["currentDifficulty"] = test.Env.CurrentDifficulty env["currentGasLimit"] = test.Env.CurrentGasLimit env["currentNumber"] = test.Env.CurrentNumber env["previousHash"] = test.Env.PreviousHash if n, ok := test.Env.CurrentTimestamp.(float64); ok { env["currentTimestamp"] = strconv.Itoa(int(n)) } else { env["currentTimestamp"] = test.Env.CurrentTimestamp.(string) } ret, logs, _, _ := helper.RunState(statedb, env, test.Transaction) statedb.Sync() rexp := helper.FromHex(test.Out) if bytes.Compare(rexp, ret) != 0 { glog.V(logger.Info).Infof("%s's return failed. Expected %x, got %x\n", name, rexp, ret) failed = 1 } for addr, account := range test.Post { obj := statedb.GetStateObject(common.HexToAddress(addr)) if obj == nil { continue } if len(test.Exec) == 0 { if obj.Balance().Cmp(common.Big(account.Balance)) != 0 { glog.V(logger.Info).Infof("%s's : (%x) balance failed. Expected %v, got %v => %v\n", name, obj.Address().Bytes()[:4], account.Balance, obj.Balance(), new(big.Int).Sub(common.Big(account.Balance), obj.Balance())) failed = 1 } } for addr, value := range account.Storage { v := obj.GetState(common.HexToHash(addr)).Bytes() vexp := helper.FromHex(value) if bytes.Compare(v, vexp) != 0 { glog.V(logger.Info).Infof("%s's : (%x: %s) storage failed. Expected %x, got %x (%v %v)\n", name, obj.Address().Bytes()[0:4], addr, vexp, v, common.BigD(vexp), common.BigD(v)) failed = 1 } } } statedb.Sync() //if !bytes.Equal(common.Hex2Bytes(test.PostStateRoot), statedb.Root()) { if common.HexToHash(test.PostStateRoot) != statedb.Root() { glog.V(logger.Info).Infof("%s's : Post state root failed. Expected %s, got %x", name, test.PostStateRoot, statedb.Root()) failed = 1 } if len(test.Logs) > 0 { if len(test.Logs) != len(logs) { glog.V(logger.Info).Infof("log length failed. Expected %d, got %d", len(test.Logs), len(logs)) failed = 1 } else { for i, log := range test.Logs { if common.HexToAddress(log.AddressF) != logs[i].Address { glog.V(logger.Info).Infof("'%s' log address failed. Expected %v got %x", name, log.AddressF, logs[i].Address) failed = 1 } if !bytes.Equal(logs[i].Data, helper.FromHex(log.DataF)) { glog.V(logger.Info).Infof("'%s' log data failed. Expected %v got %x", name, log.DataF, logs[i].Data) failed = 1 } if len(log.TopicsF) != len(logs[i].Topics) { glog.V(logger.Info).Infof("'%s' log topics length failed. Expected %d got %d", name, len(log.TopicsF), logs[i].Topics) failed = 1 } else { for j, topic := range log.TopicsF { if common.HexToHash(topic) != logs[i].Topics[j] { glog.V(logger.Info).Infof("'%s' log topic[%d] failed. Expected %v got %x", name, j, topic, logs[i].Topics[j]) failed = 1 } } } genBloom := common.LeftPadBytes(types.LogsBloom(state.Logs{logs[i]}).Bytes(), 256) if !bytes.Equal(genBloom, common.Hex2Bytes(log.BloomF)) { glog.V(logger.Info).Infof("'%s' bloom failed.", name) failed = 1 } } } } if failed == 1 { glog.V(logger.Info).Infoln(string(statedb.Dump())) } logger.Flush() } return }
// formatSilceOutput add padding to the value and adds a size func formatSliceOutput(v ...[]byte) []byte { off := common.LeftPadBytes(big.NewInt(int64(len(v))).Bytes(), 32) output := append(off, make([]byte, 0, len(v)*32)...) for _, value := range v { output = append(output, common.LeftPadBytes(value, 32)...) } return output }