Example #1
0
func testEncHandshake(token []byte) error {
	type result struct {
		side string
		s    secrets
		err  error
	}
	var (
		prv0, _  = crypto.GenerateKey()
		prv1, _  = crypto.GenerateKey()
		rw0, rw1 = net.Pipe()
		output   = make(chan result)
	)

	go func() {
		r := result{side: "initiator"}
		defer func() { output <- r }()

		pub1s := discover.PubkeyID(&prv1.PublicKey)
		r.s, r.err = initiatorEncHandshake(rw0, prv0, pub1s, token)
		if r.err != nil {
			return
		}
		id1 := discover.PubkeyID(&prv1.PublicKey)
		if r.s.RemoteID != id1 {
			r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.s.RemoteID, id1)
		}
	}()
	go func() {
		r := result{side: "receiver"}
		defer func() { output <- r }()

		r.s, r.err = receiverEncHandshake(rw1, prv1, token)
		if r.err != nil {
			return
		}
		id0 := discover.PubkeyID(&prv0.PublicKey)
		if r.s.RemoteID != id0 {
			r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.s.RemoteID, id0)
		}
	}()

	// wait for results from both sides
	r1, r2 := <-output, <-output

	if r1.err != nil {
		return fmt.Errorf("%s side error: %v", r1.side, r1.err)
	}
	if r2.err != nil {
		return fmt.Errorf("%s side error: %v", r2.side, r2.err)
	}

	// don't compare remote node IDs
	r1.s.RemoteID, r2.s.RemoteID = discover.NodeID{}, discover.NodeID{}
	// flip MACs on one of them so they compare equal
	r1.s.EgressMAC, r1.s.IngressMAC = r1.s.IngressMAC, r1.s.EgressMAC
	if !reflect.DeepEqual(r1.s, r2.s) {
		return fmt.Errorf("secrets mismatch:\n t1: %#v\n t2: %#v", r1.s, r2.s)
	}
	return nil
}
Example #2
0
func jwsMultiParams(t *testing.T) ([]*Header, *ClaimSet, []*ecdsa.PrivateKey, []*ecdsa.PublicKey) {
	seckey1, err := crypto.GenerateKey()
	checkErr(t, err)
	seckey2, err := crypto.GenerateKey()
	checkErr(t, err)
	seckey3, err := crypto.GenerateKey()
	checkErr(t, err)

	hdr1 := CreateDefaultHeader(&seckey1.PublicKey)
	hdr2 := CreateDefaultHeader(&seckey2.PublicKey)
	hdr3 := CreateDefaultHeader(&seckey3.PublicKey)

	clm := CreateDefaultClaimsMulti([]*ecdsa.PublicKey{
		&seckey1.PublicKey,
		&seckey2.PublicKey,
		&seckey3.PublicKey,
	})

	seckeys := []*ecdsa.PrivateKey{seckey1, seckey2, seckey3}
	pubkeys := []*ecdsa.PublicKey{
		&seckey1.PublicKey,
		&seckey2.PublicKey,
		&seckey3.PublicKey,
	}

	return []*Header{hdr1, hdr2, hdr3}, clm, seckeys, pubkeys
}
Example #3
0
// NodeKey retrieves the currently configured private key of the node, checking
// first any manually set key, falling back to the one found in the configured
// data folder. If no key can be found, a new one is generated.
func (c *Config) NodeKey() *ecdsa.PrivateKey {
	// Use any specifically configured key
	if c.PrivateKey != nil {
		return c.PrivateKey
	}
	// Generate ephemeral key if no datadir is being used
	if c.DataDir == "" {
		key, err := crypto.GenerateKey()
		if err != nil {
			glog.Fatalf("Failed to generate ephemeral node key: %v", err)
		}
		return key
	}
	// Fall back to persistent key from the data directory
	keyfile := filepath.Join(c.DataDir, datadirPrivateKey)
	if key, err := crypto.LoadECDSA(keyfile); err == nil {
		return key
	}
	// No persistent key found, generate and store a new one
	key, err := crypto.GenerateKey()
	if err != nil {
		glog.Fatalf("Failed to generate node key: %v", err)
	}
	if err := crypto.SaveECDSA(keyfile, key); err != nil {
		glog.V(logger.Error).Infof("Failed to persist node key: %v", err)
	}
	return key
}
Example #4
0
func TestSetupConn(t *testing.T) {
	prv0, _ := crypto.GenerateKey()
	prv1, _ := crypto.GenerateKey()
	node0 := &discover.Node{
		ID:  discover.PubkeyID(&prv0.PublicKey),
		IP:  net.IP{1, 2, 3, 4},
		TCP: 33,
	}
	node1 := &discover.Node{
		ID:  discover.PubkeyID(&prv1.PublicKey),
		IP:  net.IP{5, 6, 7, 8},
		TCP: 44,
	}
	hs0 := &protoHandshake{
		Version: baseProtocolVersion,
		ID:      node0.ID,
		Caps:    []Cap{{"a", 0}, {"b", 2}},
	}
	hs1 := &protoHandshake{
		Version: baseProtocolVersion,
		ID:      node1.ID,
		Caps:    []Cap{{"c", 1}, {"d", 3}},
	}
	fd0, fd1 := net.Pipe()

	done := make(chan struct{})
	keepalways := func(discover.NodeID) bool { return true }
	go func() {
		defer close(done)
		conn0, err := setupConn(fd0, prv0, hs0, node1, keepalways)
		if err != nil {
			t.Errorf("outbound side error: %v", err)
			return
		}
		if conn0.ID != node1.ID {
			t.Errorf("outbound conn id mismatch: got %v, want %v", conn0.ID, node1.ID)
		}
		if !reflect.DeepEqual(conn0.Caps, hs1.Caps) {
			t.Errorf("outbound caps mismatch: got %v, want %v", conn0.Caps, hs1.Caps)
		}
	}()

	conn1, err := setupConn(fd1, prv1, hs1, nil, keepalways)
	if err != nil {
		t.Fatalf("inbound side error: %v", err)
	}
	if conn1.ID != node0.ID {
		t.Errorf("inbound conn id mismatch: got %v, want %v", conn1.ID, node0.ID)
	}
	if !reflect.DeepEqual(conn1.Caps, hs0.Caps) {
		t.Errorf("inbound caps mismatch: got %v, want %v", conn1.Caps, hs0.Caps)
	}

	<-done
}
Example #5
0
func main() {
	logger.AddLogSystem(logger.NewStdLogSystem(os.Stdout, log.LstdFlags, logger.InfoLevel))

	// Generate the peer identity
	key, err := crypto.GenerateKey()
	if err != nil {
		fmt.Printf("Failed to generate peer key: %v.\n", err)
		os.Exit(-1)
	}
	name := common.MakeName("whisper-go", "1.0")
	shh := whisper.New()

	// Create an Ethereum peer to communicate through
	server := p2p.Server{
		PrivateKey: key,
		MaxPeers:   10,
		Name:       name,
		Protocols:  []p2p.Protocol{shh.Protocol()},
		ListenAddr: ":30300",
		NAT:        nat.Any(),
	}
	fmt.Println("Starting Ethereum peer...")
	if err := server.Start(); err != nil {
		fmt.Printf("Failed to start Ethereum peer: %v.\n", err)
		os.Exit(1)
	}

	// Send a message to self to check that something works
	payload := fmt.Sprintf("Hello world, this is %v. In case you're wondering, the time is %v", name, time.Now())
	if err := selfSend(shh, []byte(payload)); err != nil {
		fmt.Printf("Failed to self message: %v.\n", err)
		os.Exit(-1)
	}
}
Example #6
0
// Tests whether a message can be signed, and wrapped in plain-text.
func TestMessageCleartextSignRecover(t *testing.T) {
	key, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to create crypto key: %v", err)
	}
	payload := []byte("hello world")

	msg := NewMessage(payload)
	if _, err := msg.Wrap(DefaultPoW, Options{
		From: key,
	}); err != nil {
		t.Fatalf("failed to sign message: %v", err)
	}
	if msg.Flags&signatureFlag != signatureFlag {
		t.Fatalf("signature flag mismatch: have %d, want %d", msg.Flags&signatureFlag, signatureFlag)
	}
	if bytes.Compare(msg.Payload, payload) != 0 {
		t.Fatalf("payload mismatch after signing: have 0x%x, want 0x%x", msg.Payload, payload)
	}

	pubKey := msg.Recover()
	if pubKey == nil {
		t.Fatalf("failed to recover public key")
	}
	p1 := elliptic.Marshal(crypto.S256(), key.PublicKey.X, key.PublicKey.Y)
	p2 := elliptic.Marshal(crypto.S256(), pubKey.X, pubKey.Y)
	if !bytes.Equal(p1, p2) {
		t.Fatalf("public key mismatch: have 0x%x, want 0x%x", p2, p1)
	}
}
Example #7
0
// Tests whether a message can be encrypted and decrypted using an anonymous
// sender (i.e. no signature).
func TestMessageAnonymousEncryptDecrypt(t *testing.T) {
	key, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to create recipient crypto key: %v", err)
	}
	payload := []byte("hello world")

	msg := NewMessage(payload)
	envelope, err := msg.Wrap(DefaultPoW, Options{
		To: &key.PublicKey,
	})
	if err != nil {
		t.Fatalf("failed to encrypt message: %v", err)
	}
	if msg.Flags&signatureFlag != 0 {
		t.Fatalf("signature flag mismatch: have %d, want %d", msg.Flags&signatureFlag, 0)
	}
	if len(msg.Signature) != 0 {
		t.Fatalf("signature found for anonymous message: 0x%x", msg.Signature)
	}

	out, err := envelope.Open(key)
	if err != nil {
		t.Fatalf("failed to open encrypted message: %v", err)
	}
	if !bytes.Equal(out.Payload, payload) {
		t.Error("payload mismatch: have 0x%x, want 0x%x", out.Payload, payload)
	}
}
Example #8
0
func TestEnvelopeIdentifiedOpenUntargeted(t *testing.T) {
	key, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to generate test identity: %v", err)
	}

	payload := []byte("hello envelope")
	envelope, err := NewMessage(payload).Wrap(DefaultPoW, Options{})
	if err != nil {
		t.Fatalf("failed to wrap message: %v", err)
	}
	opened, err := envelope.Open(key)
	switch err {
	case nil:
		t.Fatalf("envelope opened with bad key: %v", opened)

	case ecies.ErrInvalidPublicKey:
		// Ok, key mismatch but opened

	default:
		t.Fatalf("failed to open envelope: %v", err)
	}

	if opened.To != nil {
		t.Fatalf("recipient mismatch: have 0x%x, want nil", opened.To)
	}
	if bytes.Compare(opened.Payload, payload) != 0 {
		t.Fatalf("payload mismatch: have 0x%x, want 0x%x", opened.Payload, payload)
	}
}
Example #9
0
func newkey() *ecdsa.PrivateKey {
	key, err := crypto.GenerateKey()
	if err != nil {
		panic("couldn't generate key: " + err.Error())
	}
	return key
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
	db, _ := ethdb.NewMemDatabase()
	statedb := state.New(common.Hash{}, db)

	var m event.TypeMux
	key, _ := crypto.GenerateKey()
	return NewTxPool(&m, func() *state.StateDB { return statedb }, func() *big.Int { return big.NewInt(1000000) }), key
}
Example #11
0
func init() {
	ringKeys[0] = benchRootKey
	ringAddrs[0] = benchRootAddr
	for i := 1; i < len(ringKeys); i++ {
		ringKeys[i], _ = crypto.GenerateKey()
		ringAddrs[i] = crypto.PubkeyToAddress(ringKeys[i].PublicKey)
	}
}
Example #12
0
// NewIdentity generates a new cryptographic identity for the client, and injects
// it into the known identities for message decryption.
func (self *Whisper) NewIdentity() *ecdsa.PrivateKey {
	key, err := crypto.GenerateKey()
	if err != nil {
		panic(err)
	}
	self.keys[string(crypto.FromECDSAPub(&key.PublicKey))] = key

	return key
}
Example #13
0
// Tests whether a message can be properly signed and encrypted.
func TestMessageFullCrypto(t *testing.T) {
	fromKey, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to create sender crypto key: %v", err)
	}
	toKey, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to create recipient crypto key: %v", err)
	}

	payload := []byte("hello world")
	msg := NewMessage(payload)
	envelope, err := msg.Wrap(DefaultPoW, Options{
		From: fromKey,
		To:   &toKey.PublicKey,
	})
	if err != nil {
		t.Fatalf("failed to encrypt message: %v", err)
	}
	if msg.Flags&signatureFlag != signatureFlag {
		t.Fatalf("signature flag mismatch: have %d, want %d", msg.Flags&signatureFlag, signatureFlag)
	}
	if len(msg.Signature) == 0 {
		t.Fatalf("no signature found for signed message")
	}

	out, err := envelope.Open(toKey)
	if err != nil {
		t.Fatalf("failed to open encrypted message: %v", err)
	}
	if !bytes.Equal(out.Payload, payload) {
		t.Error("payload mismatch: have 0x%x, want 0x%x", out.Payload, payload)
	}

	pubKey := out.Recover()
	if pubKey == nil {
		t.Fatalf("failed to recover public key")
	}
	p1 := elliptic.Marshal(crypto.S256(), fromKey.PublicKey.X, fromKey.PublicKey.Y)
	p2 := elliptic.Marshal(crypto.S256(), pubKey.X, pubKey.Y)
	if !bytes.Equal(p1, p2) {
		t.Fatalf("public key mismatch: have 0x%x, want 0x%x", p2, p1)
	}
}
Example #14
0
// Tests that node keys can be correctly created, persisted, loaded and/or made
// ephemeral.
func TestNodeKeyPersistency(t *testing.T) {
	// Create a temporary folder and make sure no key is present
	dir, err := ioutil.TempDir("", "")
	if err != nil {
		t.Fatalf("failed to create temporary data directory: %v", err)
	}
	defer os.RemoveAll(dir)

	if _, err := os.Stat(filepath.Join(dir, datadirPrivateKey)); err == nil {
		t.Fatalf("non-created node key already exists")
	}
	// Configure a node with a preset key and ensure it's not persisted
	key, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to generate one-shot node key: %v", err)
	}
	if _, err := New(&Config{DataDir: dir, PrivateKey: key}); err != nil {
		t.Fatalf("failed to create empty stack: %v", err)
	}
	if _, err := os.Stat(filepath.Join(dir, datadirPrivateKey)); err == nil {
		t.Fatalf("one-shot node key persisted to data directory")
	}
	// Configure a node with no preset key and ensure it is persisted this time
	if _, err := New(&Config{DataDir: dir}); err != nil {
		t.Fatalf("failed to create newly keyed stack: %v", err)
	}
	if _, err := os.Stat(filepath.Join(dir, datadirPrivateKey)); err != nil {
		t.Fatalf("node key not persisted to data directory: %v", err)
	}
	key, err = crypto.LoadECDSA(filepath.Join(dir, datadirPrivateKey))
	if err != nil {
		t.Fatalf("failed to load freshly persisted node key: %v", err)
	}
	blob1, err := ioutil.ReadFile(filepath.Join(dir, datadirPrivateKey))
	if err != nil {
		t.Fatalf("failed to read freshly persisted node key: %v", err)
	}
	// Configure a new node and ensure the previously persisted key is loaded
	if _, err := New(&Config{DataDir: dir}); err != nil {
		t.Fatalf("failed to create previously keyed stack: %v", err)
	}
	blob2, err := ioutil.ReadFile(filepath.Join(dir, datadirPrivateKey))
	if err != nil {
		t.Fatalf("failed to read previously persisted node key: %v", err)
	}
	if bytes.Compare(blob1, blob2) != 0 {
		t.Fatalf("persisted node key mismatch: have %x, want %x", blob2, blob1)
	}
	// Configure ephemeral node and ensure no key is dumped locally
	if _, err := New(&Config{DataDir: ""}); err != nil {
		t.Fatalf("failed to create ephemeral stack: %v", err)
	}
	if _, err := os.Stat(filepath.Join(".", datadirPrivateKey)); err == nil {
		t.Fatalf("ephemeral node key persisted to disk")
	}
}
Example #15
0
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
	db, _ := ethdb.NewMemDatabase()
	statedb, _ := state.New(common.Hash{}, db)

	var m event.TypeMux
	key, _ := crypto.GenerateKey()
	newPool := NewTxPool(testChainConfig(), &m, func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
	newPool.resetState()
	return newPool, key
}
Example #16
0
func TestSharedSecret(t *testing.T) {
	prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
	pub0 := &prv0.PublicKey
	prv1, _ := crypto.GenerateKey()
	pub1 := &prv1.PublicKey

	ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
	if err != nil {
		return
	}
	ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
	if err != nil {
		return
	}
	t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
	if !bytes.Equal(ss0, ss1) {
		t.Errorf("dont match :(")
	}
}
Example #17
0
// Tests that subsequent signers can be promoted, each requiring half plus one
// votes for it to pass through.
func TestSignerPromotion(t *testing.T) {
	// Prefund a few accounts to authorize with and create the oracle
	keys := make([]*ecdsa.PrivateKey, 5)
	for i := 0; i < len(keys); i++ {
		keys[i], _ = crypto.GenerateKey()
	}
	key, oracle, sim := setupReleaseTest(t, keys...)

	// Gradually promote the keys, until all are authorized
	keys = append([]*ecdsa.PrivateKey{key}, keys...)
	for i := 1; i < len(keys); i++ {
		// Check that no votes are accepted from the not yet authed user
		if _, err := oracle.Promote(bind.NewKeyedTransactor(keys[i]), common.Address{}); err != nil {
			t.Fatalf("Iter #%d: failed invalid promotion attempt: %v", i, err)
		}
		sim.Commit()

		pend, err := oracle.AuthProposals(nil)
		if err != nil {
			t.Fatalf("Iter #%d: failed to retrieve active proposals: %v", i, err)
		}
		if len(pend) != 0 {
			t.Fatalf("Iter #%d: proposal count mismatch: have %d, want 0", i, len(pend))
		}
		// Promote with half - 1 voters and check that the user's not yet authorized
		for j := 0; j < i/2; j++ {
			if _, err = oracle.Promote(bind.NewKeyedTransactor(keys[j]), crypto.PubkeyToAddress(keys[i].PublicKey)); err != nil {
				t.Fatalf("Iter #%d: failed valid promotion attempt: %v", i, err)
			}
		}
		sim.Commit()

		signers, err := oracle.Signers(nil)
		if err != nil {
			t.Fatalf("Iter #%d: failed to retrieve list of signers: %v", i, err)
		}
		if len(signers) != i {
			t.Fatalf("Iter #%d: signer count mismatch: have %v, want %v", i, len(signers), i)
		}
		// Promote with the last one needed to pass the promotion
		if _, err = oracle.Promote(bind.NewKeyedTransactor(keys[i/2]), crypto.PubkeyToAddress(keys[i].PublicKey)); err != nil {
			t.Fatalf("Iter #%d: failed valid promotion completion attempt: %v", i, err)
		}
		sim.Commit()

		signers, err = oracle.Signers(nil)
		if err != nil {
			t.Fatalf("Iter #%d: failed to retrieve list of signers: %v", i, err)
		}
		if len(signers) != i+1 {
			t.Fatalf("Iter #%d: signer count mismatch: have %v, want %v", i, len(signers), i+1)
		}
	}
}
Example #18
0
// Tests that transactions can be correctly sorted according to their price in
// decreasing order, but at the same time with increasing nonces when issued by
// the same account.
func TestTransactionPriceNonceSort(t *testing.T) {
	// Generate a batch of accounts to start with
	keys := make([]*ecdsa.PrivateKey, 25)
	for i := 0; i < len(keys); i++ {
		keys[i], _ = crypto.GenerateKey()
	}
	// Generate a batch of transactions with overlapping values, but shifted nonces
	txs := []*Transaction{}
	for start, key := range keys {
		for i := 0; i < 25; i++ {
			tx, _ := NewTransaction(uint64(start+i), common.Address{}, big.NewInt(100), big.NewInt(100), big.NewInt(int64(start+i)), nil).SignECDSA(key)
			txs = append(txs, tx)
		}
	}
	// Sort the transactions and cross check the nonce ordering
	SortByPriceAndNonce(txs)
	for i, txi := range txs {
		fromi, _ := txi.From()

		// Make sure the nonce order is valid
		for j, txj := range txs[i+1:] {
			fromj, _ := txj.From()

			if fromi == fromj && txi.Nonce() > txj.Nonce() {
				t.Errorf("invalid nonce ordering: tx #%d (A=%x N=%v) < tx #%d (A=%x N=%v)", i, fromi[:4], txi.Nonce(), i+j, fromj[:4], txj.Nonce())
			}
		}
		// Find the previous and next nonce of this account
		prev, next := i-1, i+1
		for j := i - 1; j >= 0; j-- {
			if fromj, _ := txs[j].From(); fromi == fromj {
				prev = j
				break
			}
		}
		for j := i + 1; j < len(txs); j++ {
			if fromj, _ := txs[j].From(); fromi == fromj {
				next = j
				break
			}
		}
		// Make sure that in between the neighbor nonces, the transaction is correctly positioned price wise
		for j := prev + 1; j < next; j++ {
			fromj, _ := txs[j].From()
			if j < i && txs[j].GasPrice().Cmp(txi.GasPrice()) < 0 {
				t.Errorf("invalid gasprice ordering: tx #%d (A=%x P=%v) < tx #%d (A=%x P=%v)", j, fromj[:4], txs[j].GasPrice(), i, fromi[:4], txi.GasPrice())
			}
			if j > i && txs[j].GasPrice().Cmp(txi.GasPrice()) > 0 {
				t.Errorf("invalid gasprice ordering: tx #%d (A=%x P=%v) > tx #%d (A=%x P=%v)", j, fromj[:4], txs[j].GasPrice(), i, fromi[:4], txi.GasPrice())
			}
		}
	}
}
Example #19
0
// Tests that proposed versions can be nuked out of existence.
func TestVersionNuking(t *testing.T) {
	// Prefund a few accounts to authorize with and create the oracle
	keys := make([]*ecdsa.PrivateKey, 9)
	for i := 0; i < len(keys); i++ {
		keys[i], _ = crypto.GenerateKey()
	}
	key, oracle, sim := setupReleaseTest(t, keys...)

	// Authorize all the keys as valid signers
	keys = append([]*ecdsa.PrivateKey{key}, keys...)
	for i := 1; i < len(keys); i++ {
		for j := 0; j <= i/2; j++ {
			if _, err := oracle.Promote(bind.NewKeyedTransactor(keys[j]), crypto.PubkeyToAddress(keys[i].PublicKey)); err != nil {
				t.Fatalf("Iter #%d: failed valid promotion attempt: %v", i, err)
			}
		}
		sim.Commit()
	}
	// Propose releases with more and more keys, always retaining enough users to nuke the proposals
	for i := 1; i < (len(keys)+1)/2; i++ {
		// Propose release with an initial set of signers
		for j := 0; j < i; j++ {
			if _, err := oracle.Release(bind.NewKeyedTransactor(keys[j]), uint32(i), uint32(i+1), uint32(i+2), [20]byte{byte(i + 3)}); err != nil {
				t.Fatalf("Iter #%d: failed valid proposal attempt: %v", i, err)
			}
		}
		sim.Commit()

		prop, err := oracle.ProposedVersion(nil)
		if err != nil {
			t.Fatalf("Iter #%d: failed to retrieve active proposal: %v", i, err)
		}
		if len(prop.Pass) != i {
			t.Fatalf("Iter #%d: proposal vote count mismatch: have %d, want %d", i, len(prop.Pass), i)
		}
		// Nuke the release with half+1 voters
		for j := i; j <= i+(len(keys)+1)/2; j++ {
			if _, err := oracle.Nuke(bind.NewKeyedTransactor(keys[j])); err != nil {
				t.Fatalf("Iter #%d: failed valid nuke attempt: %v", i, err)
			}
		}
		sim.Commit()

		prop, err = oracle.ProposedVersion(nil)
		if err != nil {
			t.Fatalf("Iter #%d: failed to retrieve active proposal: %v", i, err)
		}
		if len(prop.Pass) != 0 || len(prop.Fail) != 0 {
			t.Fatalf("Iter #%d: proposal vote count mismatch: have %d/%d pass/fail, want 0/0", i, len(prop.Pass), len(prop.Fail))
		}
	}
}
Example #20
0
func main() {
	var (
		listenAddr  = flag.String("addr", ":30301", "listen address")
		genKey      = flag.String("genkey", "", "generate a node key and quit")
		nodeKeyFile = flag.String("nodekey", "", "private key filename")
		nodeKeyHex  = flag.String("nodekeyhex", "", "private key as hex (for testing)")
		natdesc     = flag.String("nat", "none", "port mapping mechanism (any|none|upnp|pmp|extip:<IP>)")

		nodeKey *ecdsa.PrivateKey
		err     error
	)
	flag.Var(glog.GetVerbosity(), "verbosity", "log verbosity (0-9)")
	flag.Var(glog.GetVModule(), "vmodule", "log verbosity pattern")
	glog.SetToStderr(true)
	flag.Parse()

	if *genKey != "" {
		key, err := crypto.GenerateKey()
		if err != nil {
			utils.Fatalf("could not generate key: %v", err)
		}
		if err := crypto.SaveECDSA(*genKey, key); err != nil {
			utils.Fatalf("%v", err)
		}
		os.Exit(0)
	}

	natm, err := nat.Parse(*natdesc)
	if err != nil {
		utils.Fatalf("-nat: %v", err)
	}
	switch {
	case *nodeKeyFile == "" && *nodeKeyHex == "":
		utils.Fatalf("Use -nodekey or -nodekeyhex to specify a private key")
	case *nodeKeyFile != "" && *nodeKeyHex != "":
		utils.Fatalf("Options -nodekey and -nodekeyhex are mutually exclusive")
	case *nodeKeyFile != "":
		if nodeKey, err = crypto.LoadECDSA(*nodeKeyFile); err != nil {
			utils.Fatalf("-nodekey: %v", err)
		}
	case *nodeKeyHex != "":
		if nodeKey, err = crypto.HexToECDSA(*nodeKeyHex); err != nil {
			utils.Fatalf("-nodekeyhex: %v", err)
		}
	}

	if _, err := discover.ListenUDP(nodeKey, *listenAddr, natm, ""); err != nil {
		utils.Fatalf("%v", err)
	}
	select {}
}
Example #21
0
func writeKey(target string) {
	key, err := crypto.GenerateKey()
	if err != nil {
		log.Fatal("could not generate key: %v", err)
	}
	b := crypto.FromECDSA(key)
	if target == "-" {
		fmt.Println(hex.EncodeToString(b))
	} else {
		if err := ioutil.WriteFile(target, b, 0600); err != nil {
			log.Fatal("write error: ", err)
		}
	}
}
Example #22
0
// Tests that demoting a signer will auto-nuke the currently pending release.
func TestVersionAutoNuke(t *testing.T) {
	// Prefund a few accounts to authorize with and create the oracle
	keys := make([]*ecdsa.PrivateKey, 5)
	for i := 0; i < len(keys); i++ {
		keys[i], _ = crypto.GenerateKey()
	}
	key, oracle, sim := setupReleaseTest(t, keys...)

	// Authorize all the keys as valid signers
	keys = append([]*ecdsa.PrivateKey{key}, keys...)
	for i := 1; i < len(keys); i++ {
		for j := 0; j <= i/2; j++ {
			if _, err := oracle.Promote(bind.NewKeyedTransactor(keys[j]), crypto.PubkeyToAddress(keys[i].PublicKey)); err != nil {
				t.Fatalf("Iter #%d: failed valid promotion attempt: %v", i, err)
			}
		}
		sim.Commit()
	}
	// Make a release proposal and check it's existence
	if _, err := oracle.Release(bind.NewKeyedTransactor(keys[0]), 1, 2, 3, [20]byte{4}); err != nil {
		t.Fatalf("Failed valid proposal attempt: %v", err)
	}
	sim.Commit()

	prop, err := oracle.ProposedVersion(nil)
	if err != nil {
		t.Fatalf("Failed to retrieve active proposal: %v", err)
	}
	if len(prop.Pass) != 1 {
		t.Fatalf("Proposal vote count mismatch: have %d, want 1", len(prop.Pass))
	}
	// Demote a signer and check release proposal deletion
	for i := 0; i <= len(keys)/2; i++ {
		if _, err := oracle.Demote(bind.NewKeyedTransactor(keys[i]), crypto.PubkeyToAddress(keys[len(keys)-1].PublicKey)); err != nil {
			t.Fatalf("Iter #%d: failed valid demotion attempt: %v", i, err)
		}
	}
	sim.Commit()

	prop, err = oracle.ProposedVersion(nil)
	if err != nil {
		t.Fatalf("Failed to retrieve active proposal: %v", err)
	}
	if len(prop.Pass) != 0 {
		t.Fatalf("Proposal vote count mismatch: have %d, want 0", len(prop.Pass))
	}
}
Example #23
0
// New initialises a new abi and returns the contract. It does not
// deploy the contract, hence the name.
func New(db ethdb.Database, mux *event.TypeMux, blockchain *core.BlockChain, callState func() *state.StateDB) (*Contract, error) {
	contract := Contract{
		blockchain: blockchain,
		subs:       make(map[common.Hash]*Subscription),
		filters:    filters.NewFilterSystem(mux),
		callState:  callState,
	}
	contract.callKey, _ = crypto.GenerateKey()

	var err error
	contract.abi, err = abi.JSON(strings.NewReader(jsonAbi))
	if err != nil {
		return nil, err
	}

	return &contract, nil
}
Example #24
0
func (cfg *Config) nodeKey() (*ecdsa.PrivateKey, error) {
	// use explicit key from command line args if set
	if cfg.NodeKey != nil {
		return cfg.NodeKey, nil
	}
	// use persistent key if present
	keyfile := filepath.Join(cfg.DataDir, "nodekey")
	key, err := crypto.LoadECDSA(keyfile)
	if err == nil {
		return key, nil
	}
	// no persistent key, generate and store a new one
	if key, err = crypto.GenerateKey(); err != nil {
		return nil, fmt.Errorf("could not generate server key: %v", err)
	}
	if err := crypto.SaveECDSA(keyfile, key); err != nil {
		glog.V(logger.Error).Infoln("could not persist nodekey: ", err)
	}
	return key, nil
}
Example #25
0
// setupReleaseTest creates a blockchain simulator and deploys a version oracle
// contract for testing.
func setupReleaseTest(t *testing.T, prefund ...*ecdsa.PrivateKey) (*ecdsa.PrivateKey, *ReleaseOracle, *backends.SimulatedBackend) {
	// Generate a new random account and a funded simulator
	key, _ := crypto.GenerateKey()
	auth := bind.NewKeyedTransactor(key)

	accounts := []core.GenesisAccount{{Address: auth.From, Balance: big.NewInt(10000000000)}}
	for _, key := range prefund {
		accounts = append(accounts, core.GenesisAccount{Address: crypto.PubkeyToAddress(key.PublicKey), Balance: big.NewInt(10000000000)})
	}
	sim := backends.NewSimulatedBackend(accounts...)

	// Deploy a version oracle contract, commit and return
	_, _, oracle, err := DeployReleaseOracle(auth, sim, []common.Address{auth.From})
	if err != nil {
		t.Fatalf("Failed to deploy version contract: %v", err)
	}
	sim.Commit()

	return key, oracle, sim
}
Example #26
0
func TestEnvelopeAnonymousOpenTargeted(t *testing.T) {
	key, err := crypto.GenerateKey()
	if err != nil {
		t.Fatalf("failed to generate test identity: %v", err)
	}

	payload := []byte("hello envelope")
	envelope, err := NewMessage(payload).Wrap(DefaultPoW, Options{
		To: &key.PublicKey,
	})
	if err != nil {
		t.Fatalf("failed to wrap message: %v", err)
	}
	opened, err := envelope.Open(nil)
	if err != nil {
		t.Fatalf("failed to open envelope: %v", err)
	}
	if opened.To != nil {
		t.Fatalf("recipient mismatch: have 0x%x, want nil", opened.To)
	}
	if bytes.Compare(opened.Payload, payload) == 0 {
		t.Fatalf("payload match, should have been encrypted: 0x%x", opened.Payload)
	}
}
Example #27
0
func testEncHandshake(token []byte) error {
	type result struct {
		side string
		id   discover.NodeID
		err  error
	}
	var (
		prv0, _  = crypto.GenerateKey()
		prv1, _  = crypto.GenerateKey()
		fd0, fd1 = net.Pipe()
		c0, c1   = newRLPX(fd0).(*rlpx), newRLPX(fd1).(*rlpx)
		output   = make(chan result)
	)

	go func() {
		r := result{side: "initiator"}
		defer func() { output <- r }()
		defer fd0.Close()

		dest := &discover.Node{ID: discover.PubkeyID(&prv1.PublicKey)}
		r.id, r.err = c0.doEncHandshake(prv0, dest)
		if r.err != nil {
			return
		}
		id1 := discover.PubkeyID(&prv1.PublicKey)
		if r.id != id1 {
			r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.id, id1)
		}
	}()
	go func() {
		r := result{side: "receiver"}
		defer func() { output <- r }()
		defer fd1.Close()

		r.id, r.err = c1.doEncHandshake(prv1, nil)
		if r.err != nil {
			return
		}
		id0 := discover.PubkeyID(&prv0.PublicKey)
		if r.id != id0 {
			r.err = fmt.Errorf("remote ID mismatch: got %v, want: %v", r.id, id0)
		}
	}()

	// wait for results from both sides
	r1, r2 := <-output, <-output
	if r1.err != nil {
		return fmt.Errorf("%s side error: %v", r1.side, r1.err)
	}
	if r2.err != nil {
		return fmt.Errorf("%s side error: %v", r2.side, r2.err)
	}

	// compare derived secrets
	if !reflect.DeepEqual(c0.rw.egressMAC, c1.rw.ingressMAC) {
		return fmt.Errorf("egress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.egressMAC, c1.rw.ingressMAC)
	}
	if !reflect.DeepEqual(c0.rw.ingressMAC, c1.rw.egressMAC) {
		return fmt.Errorf("ingress mac mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.ingressMAC, c1.rw.egressMAC)
	}
	if !reflect.DeepEqual(c0.rw.enc, c1.rw.enc) {
		return fmt.Errorf("enc cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.enc, c1.rw.enc)
	}
	if !reflect.DeepEqual(c0.rw.dec, c1.rw.dec) {
		return fmt.Errorf("dec cipher mismatch:\n c0.rw: %#v\n c1.rw: %#v", c0.rw.dec, c1.rw.dec)
	}
	return nil
}
Example #28
0
func TestProtocolHandshake(t *testing.T) {
	var (
		prv0, _ = crypto.GenerateKey()
		node0   = &discover.Node{ID: discover.PubkeyID(&prv0.PublicKey), IP: net.IP{1, 2, 3, 4}, TCP: 33}
		hs0     = &protoHandshake{Version: 3, ID: node0.ID, Caps: []Cap{{"a", 0}, {"b", 2}}}

		prv1, _ = crypto.GenerateKey()
		node1   = &discover.Node{ID: discover.PubkeyID(&prv1.PublicKey), IP: net.IP{5, 6, 7, 8}, TCP: 44}
		hs1     = &protoHandshake{Version: 3, ID: node1.ID, Caps: []Cap{{"c", 1}, {"d", 3}}}

		fd0, fd1 = net.Pipe()
		wg       sync.WaitGroup
	)

	wg.Add(2)
	go func() {
		defer wg.Done()
		defer fd1.Close()
		rlpx := newRLPX(fd0)
		remid, err := rlpx.doEncHandshake(prv0, node1)
		if err != nil {
			t.Errorf("dial side enc handshake failed: %v", err)
			return
		}
		if remid != node1.ID {
			t.Errorf("dial side remote id mismatch: got %v, want %v", remid, node1.ID)
			return
		}

		phs, err := rlpx.doProtoHandshake(hs0)
		if err != nil {
			t.Errorf("dial side proto handshake error: %v", err)
			return
		}
		phs.Rest = nil
		if !reflect.DeepEqual(phs, hs1) {
			t.Errorf("dial side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs1))
			return
		}
		rlpx.close(DiscQuitting)
	}()
	go func() {
		defer wg.Done()
		defer fd1.Close()
		rlpx := newRLPX(fd1)
		remid, err := rlpx.doEncHandshake(prv1, nil)
		if err != nil {
			t.Errorf("listen side enc handshake failed: %v", err)
			return
		}
		if remid != node0.ID {
			t.Errorf("listen side remote id mismatch: got %v, want %v", remid, node0.ID)
			return
		}

		phs, err := rlpx.doProtoHandshake(hs1)
		if err != nil {
			t.Errorf("listen side proto handshake error: %v", err)
			return
		}
		phs.Rest = nil
		if !reflect.DeepEqual(phs, hs0) {
			t.Errorf("listen side proto handshake mismatch:\ngot: %s\nwant: %s\n", spew.Sdump(phs), spew.Sdump(hs0))
			return
		}

		if err := ExpectMsg(rlpx, discMsg, []DiscReason{DiscQuitting}); err != nil {
			t.Errorf("error receiving disconnect: %v", err)
		}
	}()
	wg.Wait()
}
Example #29
0
import (
	"errors"
	"io/ioutil"
	"os"
	"reflect"
	"testing"
	"time"

	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/p2p"
	"github.com/ethereum/go-ethereum/rpc"
)

var (
	testNodeKey, _ = crypto.GenerateKey()
)

func testNodeConfig() *Config {
	return &Config{
		PrivateKey: testNodeKey,
		Name:       "test node",
	}
}

// Tests that an empty protocol stack can be started, restarted and stopped.
func TestNodeLifeCycle(t *testing.T) {
	stack, err := New(testNodeConfig())
	if err != nil {
		t.Fatalf("failed to create protocol stack: %v", err)
	}
Example #30
0
// "main" method, generates a public key,  address
//
func addrGen(toMatch string) {
	key, _ := crypto.GenerateKey()
	addr := crypto.PubkeyToAddress(key.PublicKey)
	addrStr := hex.EncodeToString(addr[:])
	addrMatch(addrStr, toMatch, key)
}