// secrets is called after the handshake is completed. // It extracts the connection secrets from the handshake values. func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) if err != nil { return secrets{}, err } // derive base secrets from ephemeral key agreement sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) s := secrets{ RemoteID: h.remoteID, AES: aesSecret, MAC: crypto.Keccak256(ecdheSecret, aesSecret), } // setup sha3 instances for the MACs mac1 := sha3.NewKeccak256() mac1.Write(xor(s.MAC, h.respNonce)) mac1.Write(auth) mac2 := sha3.NewKeccak256() mac2.Write(xor(s.MAC, h.initNonce)) mac2.Write(authResp) if h.initiator { s.EgressMAC, s.IngressMAC = mac1, mac2 } else { s.EgressMAC, s.IngressMAC = mac2, mac1 } return s, nil }
func decodePacket(buf []byte) (packet, NodeID, []byte, error) { if len(buf) < headSize+1 { return nil, NodeID{}, nil, errPacketTooSmall } hash, sig, sigdata := buf[:macSize], buf[macSize:headSize], buf[headSize:] shouldhash := crypto.Keccak256(buf[macSize:]) if !bytes.Equal(hash, shouldhash) { return nil, NodeID{}, nil, errBadHash } fromID, err := recoverNodeID(crypto.Keccak256(buf[headSize:]), sig) if err != nil { return nil, NodeID{}, hash, err } var req packet switch ptype := sigdata[0]; ptype { case pingPacket: req = new(ping) case pongPacket: req = new(pong) case findnodePacket: req = new(findnode) case neighborsPacket: req = new(neighbors) default: return nil, fromID, hash, fmt.Errorf("unknown type: %d", ptype) } s := rlp.NewStream(bytes.NewReader(sigdata[1:]), 0) err = s.Decode(req) return req, fromID, hash, err }
func decryptKeyV1(keyProtected *encryptedKeyJSONV1, auth string) (keyBytes []byte, keyId []byte, err error) { keyId = uuid.Parse(keyProtected.Id) mac, err := hex.DecodeString(keyProtected.Crypto.MAC) if err != nil { return nil, nil, err } iv, err := hex.DecodeString(keyProtected.Crypto.CipherParams.IV) if err != nil { return nil, nil, err } cipherText, err := hex.DecodeString(keyProtected.Crypto.CipherText) if err != nil { return nil, nil, err } derivedKey, err := getKDFKey(keyProtected.Crypto, auth) if err != nil { return nil, nil, err } calculatedMAC := crypto.Keccak256(derivedKey[16:32], cipherText) if !bytes.Equal(calculatedMAC, mac) { return nil, nil, ErrDecrypt } plainText, err := aesCBCDecrypt(crypto.Keccak256(derivedKey[:16])[:16], cipherText, iv) if err != nil { return nil, nil, err } return plainText, keyId, err }
// sets defaults on the config func setDefaults(cfg *Config) { if cfg.Difficulty == nil { cfg.Difficulty = new(big.Int) } if cfg.Time == nil { cfg.Time = big.NewInt(time.Now().Unix()) } if cfg.GasLimit == nil { cfg.GasLimit = new(big.Int).Set(common.MaxBig) } if cfg.GasPrice == nil { cfg.GasPrice = new(big.Int) } if cfg.Value == nil { cfg.Value = new(big.Int) } if cfg.BlockNumber == nil { cfg.BlockNumber = new(big.Int) } if cfg.GetHashFn == nil { cfg.GetHashFn = func(n uint64) common.Hash { return common.BytesToHash(crypto.Keccak256([]byte(new(big.Int).SetUint64(n).String()))) } } }
func ecrecoverFunc(in []byte) []byte { in = common.RightPadBytes(in, 128) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := common.BytesToBig(in[64:96]) s := common.BytesToBig(in[96:128]) // Treat V as a 256bit integer vbig := common.Bytes2Big(in[32:64]) v := byte(vbig.Uint64()) // tighter sig s values in homestead only apply to tx sigs if !crypto.ValidateSignatureValues(v, r, s, false) { glog.V(logger.Debug).Infof("EC RECOVER FAIL: v, r or s value invalid") return nil } // v needs to be at the end and normalized for libsecp256k1 vbignormal := new(big.Int).Sub(vbig, big.NewInt(27)) vnormal := byte(vbignormal.Uint64()) rsv := append(in[64:128], vnormal) pubKey, err := crypto.Ecrecover(in[:32], rsv) // make sure the public key is a valid one if err != nil { glog.V(logger.Error).Infof("EC RECOVER FAIL: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32) }
func storageMapping(addr, key []byte) []byte { data := make([]byte, 64) copy(data[0:32], key[0:32]) copy(data[32:64], addr[0:32]) sha := crypto.Keccak256(data) return sha }
func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) { buf := make([]byte, authMsgLen) n := copy(buf, msg.Signature[:]) n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey))) n += copy(buf[n:], msg.InitiatorPubkey[:]) n += copy(buf[n:], msg.Nonce[:]) buf[n] = 0 // token-flag return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil) }
// Id returns the canonical representation of the event's signature used by the // abi definition to identify event names and types. func (e Event) Id() common.Hash { types := make([]string, len(e.Inputs)) i := 0 for _, input := range e.Inputs { types[i] = input.Type.String() i++ } return common.BytesToHash(crypto.Keccak256([]byte(fmt.Sprintf("%v(%v)", e.Name, strings.Join(types, ","))))) }
func SaveInfo(info *ContractInfo, filename string) (contenthash common.Hash, err error) { infojson, err := json.Marshal(info) if err != nil { return } contenthash = common.BytesToHash(crypto.Keccak256(infojson)) err = ioutil.WriteFile(filename, infojson, 0600) return }
// storeProof stores the new trie nodes obtained from a merkle proof in the database func storeProof(db ethdb.Database, proof []rlp.RawValue) { for _, buf := range proof { hash := crypto.Keccak256(buf) val, _ := db.Get(hash) if val == nil { db.Put(hash, buf) } } }
func TestRLPXFrameFake(t *testing.T) { buf := new(bytes.Buffer) hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}) rw := newRLPXFrameRW(buf, secrets{ AES: crypto.Keccak256(), MAC: crypto.Keccak256(), IngressMAC: hash, EgressMAC: hash, }) golden := unhex(` 00828ddae471818bb0bfa6b551d1cb42 01010101010101010101010101010101 ba628a4ba590cb43f7848f41c4382885 01010101010101010101010101010101 `) // Check WriteMsg. This puts a message into the buffer. if err := Send(rw, 8, []uint{1, 2, 3, 4}); err != nil { t.Fatalf("WriteMsg error: %v", err) } written := buf.Bytes() if !bytes.Equal(written, golden) { t.Fatalf("output mismatch:\n got: %x\n want: %x", written, golden) } // Check ReadMsg. It reads the message encoded by WriteMsg, which // is equivalent to the golden message above. msg, err := rw.ReadMsg() if err != nil { t.Fatalf("ReadMsg error: %v", err) } if msg.Size != 5 { t.Errorf("msg size mismatch: got %d, want %d", msg.Size, 5) } if msg.Code != 8 { t.Errorf("msg code mismatch: got %d, want %d", msg.Code, 8) } payload, _ := ioutil.ReadAll(msg.Payload) wantPayload := unhex("C401020304") if !bytes.Equal(payload, wantPayload) { t.Errorf("msg payload mismatch:\ngot %x\nwant %x", payload, wantPayload) } }
// DeliverNodeData injects a node state data retrieval response into the queue. // The method returns the number of node state entries originally requested, and // the number of them actually accepted from the delivery. func (q *queue) DeliverNodeData(id string, data [][]byte, callback func(error, int)) (int, error) { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the data was never requested request := q.statePendPool[id] if request == nil { return 0, errNoFetchesPending } stateReqTimer.UpdateSince(request.Time) delete(q.statePendPool, id) // If no data was retrieved, mark their hashes as unavailable for the origin peer if len(data) == 0 { for hash, _ := range request.Hashes { request.Peer.MarkLacking(hash) } } // Iterate over the downloaded data and verify each of them accepted, errs := 0, make([]error, 0) process := []trie.SyncResult{} for _, blob := range data { // Skip any state trie entires that were not requested hash := common.BytesToHash(crypto.Keccak256(blob)) if _, ok := request.Hashes[hash]; !ok { errs = append(errs, fmt.Errorf("non-requested state data %x", hash)) continue } // Inject the next state trie item into the processing queue process = append(process, trie.SyncResult{hash, blob}) accepted++ delete(request.Hashes, hash) delete(q.stateTaskPool, hash) } // Start the asynchronous node state data injection atomic.AddInt32(&q.stateProcessors, 1) go func() { defer atomic.AddInt32(&q.stateProcessors, -1) q.deliverNodeData(process, callback) }() // Return all failed or missing fetches to the queue for hash, index := range request.Hashes { q.stateTaskQueue.Push(hash, float32(index)) } // If none of the data items were good, it's a stale delivery switch { case len(errs) == 0: return accepted, nil case len(errs) == len(request.Hashes): return accepted, errStaleDelivery default: return accepted, fmt.Errorf("multiple failures: %v", errs) } }
func encodePacket(priv *ecdsa.PrivateKey, ptype byte, req interface{}) ([]byte, error) { b := new(bytes.Buffer) b.Write(headSpace) b.WriteByte(ptype) if err := rlp.Encode(b, req); err != nil { glog.V(logger.Error).Infoln("error encoding packet:", err) return nil, err } packet := b.Bytes() sig, err := crypto.Sign(crypto.Keccak256(packet[headSize:]), priv) if err != nil { glog.V(logger.Error).Infoln("could not sign packet:", err) return nil, err } copy(packet[macSize:], sig) // add the hash to the front. Note: this doesn't protect the // packet in any way. Our public key will be part of this hash in // The future. copy(packet, crypto.Keccak256(packet[macSize:])) return packet, nil }
func bloom9(b []byte) *big.Int { b = crypto.Keccak256(b[:]) r := new(big.Int) for i := 0; i < 6; i += 2 { t := big.NewInt(1) b := (uint(b[i+1]) + (uint(b[i]) << 8)) & 2047 r.Or(r, t.Lsh(t, b)) } return r }
func doFrom(tx *Transaction, homestead bool) (common.Address, error) { if from := tx.from.Load(); from != nil { return from.(common.Address), nil } pubkey, err := tx.publicKey(homestead) if err != nil { return common.Address{}, err } var addr common.Address copy(addr[:], crypto.Keccak256(pubkey[1:])[12:]) tx.from.Store(addr) return addr, nil }
func (self *NatSpec) makeAbi2method(abiKey [8]byte) (meth *method) { for signature, m := range self.userDoc.Methods { name := strings.Split(signature, "(")[0] hash := []byte(common.Bytes2Hex(crypto.Keccak256([]byte(signature)))) var key [8]byte copy(key[:], hash[:8]) if bytes.Equal(key[:], abiKey[:]) { meth = m meth.name = name return } } return }
// Register registers a new content hash in the registry. func (api *PrivateRegistarAPI) Register(sender common.Address, addr common.Address, contentHashHex string) (bool, error) { block := api.be.bc.CurrentBlock() state, err := state.New(block.Root(), api.be.chainDb) if err != nil { return false, err } codeb := state.GetCode(addr) codeHash := common.BytesToHash(crypto.Keccak256(codeb)) contentHash := common.HexToHash(contentHashHex) _, err = registrar.New(api.be).SetHashToHash(sender, codeHash, contentHash) return err == nil, err }
func TestSecureGetKey(t *testing.T) { trie := newEmptySecure() trie.Update([]byte("foo"), []byte("bar")) key := []byte("foo") value := []byte("bar") seckey := crypto.Keccak256(key) if !bytes.Equal(trie.Get(key), value) { t.Errorf("Get did not return bar") } if k := trie.GetKey(seckey); !bytes.Equal(k, key) { t.Errorf("GetKey returned %q, want %q", k, key) } }
// Seal closes the envelope by spending the requested amount of time as a proof // of work on hashing the data. func (self *Envelope) Seal(pow time.Duration) { d := make([]byte, 64) copy(d[:32], self.rlpWithoutNonce()) finish, bestBit := time.Now().Add(pow).UnixNano(), 0 for nonce := uint32(0); time.Now().UnixNano() < finish; { for i := 0; i < 1024; i++ { binary.BigEndian.PutUint32(d[60:], nonce) firstBit := common.FirstBitSet(common.BigD(crypto.Keccak256(d))) if firstBit > bestBit { self.Nonce, bestBit = nonce, firstBit } nonce++ } } }
// EncryptKey encrypts a key using the specified scrypt parameters into a json // blob that can be decrypted later on. func EncryptKey(key *Key, auth string, scryptN, scryptP int) ([]byte, error) { authArray := []byte(auth) salt := randentropy.GetEntropyCSPRNG(32) derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptR, scryptP, scryptDKLen) if err != nil { return nil, err } encryptKey := derivedKey[:16] keyBytes := crypto.FromECDSA(key.PrivateKey) iv := randentropy.GetEntropyCSPRNG(aes.BlockSize) // 16 cipherText, err := aesCTRXOR(encryptKey, keyBytes, iv) if err != nil { return nil, err } mac := crypto.Keccak256(derivedKey[16:32], cipherText) scryptParamsJSON := make(map[string]interface{}, 5) scryptParamsJSON["n"] = scryptN scryptParamsJSON["r"] = scryptR scryptParamsJSON["p"] = scryptP scryptParamsJSON["dklen"] = scryptDKLen scryptParamsJSON["salt"] = hex.EncodeToString(salt) cipherParamsJSON := cipherparamsJSON{ IV: hex.EncodeToString(iv), } cryptoStruct := cryptoJSON{ Cipher: "aes-128-ctr", CipherText: hex.EncodeToString(cipherText), CipherParams: cipherParamsJSON, KDF: "scrypt", KDFParams: scryptParamsJSON, MAC: hex.EncodeToString(mac), } encryptedKeyJSONV3 := encryptedKeyJSONV3{ hex.EncodeToString(key.Address[:]), cryptoStruct, key.Id.String(), version, } return json.Marshal(encryptedKeyJSONV3) }
func TestMethodSignature(t *testing.T) { String, _ := NewType("string") m := Method{"foo", false, []Argument{Argument{"bar", String, false}, Argument{"baz", String, false}}, nil} exp := "foo(string,string)" if m.Sig() != exp { t.Error("signature mismatch", exp, "!=", m.Sig()) } idexp := crypto.Keccak256([]byte(exp))[:4] if !bytes.Equal(m.Id(), idexp) { t.Errorf("expected ids to match %x != %x", m.Id(), idexp) } uintt, _ := NewType("uint") m = Method{"foo", false, []Argument{Argument{"bar", uintt, false}}, nil} exp = "foo(uint256)" if m.Sig() != exp { t.Error("signature mismatch", exp, "!=", m.Sig()) } }
func decryptKeyV3(keyProtected *encryptedKeyJSONV3, auth string) (keyBytes []byte, keyId []byte, err error) { if keyProtected.Version != version { return nil, nil, fmt.Errorf("Version not supported: %v", keyProtected.Version) } if keyProtected.Crypto.Cipher != "aes-128-ctr" { return nil, nil, fmt.Errorf("Cipher not supported: %v", keyProtected.Crypto.Cipher) } keyId = uuid.Parse(keyProtected.Id) mac, err := hex.DecodeString(keyProtected.Crypto.MAC) if err != nil { return nil, nil, err } iv, err := hex.DecodeString(keyProtected.Crypto.CipherParams.IV) if err != nil { return nil, nil, err } cipherText, err := hex.DecodeString(keyProtected.Crypto.CipherText) if err != nil { return nil, nil, err } derivedKey, err := getKDFKey(keyProtected.Crypto, auth) if err != nil { return nil, nil, err } calculatedMAC := crypto.Keccak256(derivedKey[16:32], cipherText) if !bytes.Equal(calculatedMAC, mac) { return nil, nil, ErrDecrypt } plainText, err := aesCTRXOR(derivedKey[:16], cipherText, iv) if err != nil { return nil, nil, err } return plainText, keyId, err }
func decryptPreSaleKey(fileContent []byte, password string) (key *Key, err error) { preSaleKeyStruct := struct { EncSeed string EthAddr string Email string BtcAddr string }{} err = json.Unmarshal(fileContent, &preSaleKeyStruct) if err != nil { return nil, err } encSeedBytes, err := hex.DecodeString(preSaleKeyStruct.EncSeed) iv := encSeedBytes[:16] cipherText := encSeedBytes[16:] /* See https://github.com/ethereum/pyethsaletool pyethsaletool generates the encryption key from password by 2000 rounds of PBKDF2 with HMAC-SHA-256 using password as salt (:(). 16 byte key length within PBKDF2 and resulting key is used as AES key */ passBytes := []byte(password) derivedKey := pbkdf2.Key(passBytes, passBytes, 2000, 16, sha256.New) plainText, err := aesCBCDecrypt(derivedKey, cipherText, iv) if err != nil { return nil, err } ethPriv := crypto.Keccak256(plainText) ecKey := crypto.ToECDSA(ethPriv) key = &Key{ Id: nil, Address: crypto.PubkeyToAddress(ecKey.PublicKey), PrivateKey: ecKey, } derivedAddr := hex.EncodeToString(key.Address.Bytes()) // needed because .Hex() gives leading "0x" expectedAddr := preSaleKeyStruct.EthAddr if derivedAddr != expectedAddr { err = fmt.Errorf("decrypted addr '%s' not equal to expected addr '%s'", derivedAddr, expectedAddr) } return key, err }
// also called by admin.contractInfo.get func FetchDocsForContract(contractAddress string, xeth *xeth.XEth, client *httpclient.HTTPClient) (content []byte, err error) { // retrieve contract hash from state codehex := xeth.CodeAt(contractAddress) codeb := xeth.CodeAtBytes(contractAddress) if codehex == "0x" { err = fmt.Errorf("contract (%v) not found", contractAddress) return } codehash := common.BytesToHash(crypto.Keccak256(codeb)) // set up nameresolver with natspecreg + urlhint contract addresses reg := registrar.New(xeth) // resolve host via HashReg/UrlHint Resolver hash, err := reg.HashToHash(codehash) if err != nil { return } if client.HasScheme("bzz") { content, err = client.Get("bzz://"+hash.Hex()[2:], "") if err == nil { // non-fatal return } err = nil //falling back to urlhint } uri, err := reg.HashToUrl(hash) if err != nil { return } // get content via http client and authenticate content using hash content, err = client.GetAuthContent(uri, hash) if err != nil { return } return }
func TestMultiPack(t *testing.T) { abi, err := JSON(strings.NewReader(jsondata2)) if err != nil { t.Error(err) t.FailNow() } sig := crypto.Keccak256([]byte("bar(uint32,uint16)"))[:4] sig = append(sig, make([]byte, 64)...) sig[35] = 10 sig[67] = 11 packed, err := abi.Pack("bar", uint32(10), uint16(11)) if err != nil { t.Error(err) t.FailNow() } if !bytes.Equal(packed, sig) { t.Errorf("expected %x got %x", sig, packed) } }
func (self *StateObject) SetCode(code []byte) { self.code = code self.codeHash = crypto.Keccak256(code) self.dirty = true }
import ( "bytes" "fmt" "io" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" ) var emptyCodeHash = crypto.Keccak256(nil) type Code []byte func (self Code) String() string { return string(self) //strings.Join(Disassemble(self), " ") } type Storage map[string]common.Hash func (self Storage) String() (str string) { for key, value := range self { str += fmt.Sprintf("%X : %X\n", key, value) } return
// Sha3 applies the ethereum sha3 implementation on the input. // It assumes the input is hex encoded. func (s *PublicWeb3API) Sha3(input string) string { return common.ToHex(crypto.Keccak256(common.FromHex(input))) }
func (self *Env) GetHash(n uint64) common.Hash { return common.BytesToHash(crypto.Keccak256([]byte(big.NewInt(int64(n)).String()))) }
func abiSignature(s string) string { return common.ToHex(crypto.Keccak256([]byte(s))[:4]) }