func runProgram(program *Program, pcstart uint64, mem *Memory, stack *stack, env Environment, contract *Contract, input []byte) ([]byte, error) { contract.Input = input var ( pc uint64 = program.mapping[pcstart] instrCount = 0 ) if glog.V(logger.Debug) { glog.Infof("running JIT program %x\n", program.Id[:4]) tstart := time.Now() defer func() { glog.Infof("JIT program %x done. time: %v instrc: %v\n", program.Id[:4], time.Since(tstart), instrCount) }() } for pc < uint64(len(program.instructions)) { instrCount++ instr := program.instructions[pc] ret, err := instr.do(program, &pc, env, contract, mem, stack) if err != nil { return nil, err } if instr.halts() { return contract.Return(ret), nil } } contract.Input = nil return contract.Return(nil), nil }
func (bc *ChainManager) setLastState() error { data, _ := bc.chainDb.Get([]byte("LastBlock")) if len(data) != 0 { block := bc.GetBlock(common.BytesToHash(data)) if block != nil { bc.currentBlock = block bc.lastBlockHash = block.Hash() } else { glog.Infof("LastBlock (%x) not found. Recovering...\n", data) if bc.recover() { glog.Infof("Recover successful") } else { glog.Fatalf("Recover failed. Please report") } } } else { bc.Reset() } bc.td = bc.currentBlock.Td bc.currentGasLimit = CalcGasLimit(bc.currentBlock) if glog.V(logger.Info) { glog.Infof("Last block (#%v) %x TD=%v\n", bc.currentBlock.Number(), bc.currentBlock.Hash(), bc.td) } return nil }
// validatePool removes invalid and processed transactions from the main pool. // If a transaction is removed for being invalid (e.g. out of funds), all sub- // sequent (Still valid) transactions are moved back into the future queue. This // is important to prevent a drained account from DOSing the network with non // executable transactions. func (pool *TxPool) validatePool() { state, err := pool.currentState() if err != nil { glog.V(logger.Info).Infoln("failed to get current state: %v", err) return } balanceCache := make(map[common.Address]*big.Int) // Clean up the pending pool, accumulating invalid nonces gaps := make(map[common.Address]uint64) for hash, tx := range pool.pending { sender, _ := tx.From() // err already checked // Perform light nonce and balance validation balance := balanceCache[sender] if balance == nil { balance = state.GetBalance(sender) balanceCache[sender] = balance } if past := state.GetNonce(sender) > tx.Nonce(); past || balance.Cmp(tx.Cost()) < 0 { // Remove an already past it invalidated transaction if glog.V(logger.Core) { glog.Infof("removed tx (%v) from pool: low tx nonce or out of funds\n", tx) } delete(pool.pending, hash) // Track the smallest invalid nonce to postpone subsequent transactions if !past { if prev, ok := gaps[sender]; !ok || tx.Nonce() < prev { gaps[sender] = tx.Nonce() } } } } // Move all transactions after a gap back to the future queue if len(gaps) > 0 { for hash, tx := range pool.pending { sender, _ := tx.From() if gap, ok := gaps[sender]; ok && tx.Nonce() >= gap { if glog.V(logger.Core) { glog.Infof("postponed tx (%v) due to introduced gap\n", tx) } pool.queueTx(hash, tx) delete(pool.pending, hash) } } } }
func blockRecovery(ctx *cli.Context) { if len(ctx.Args()) < 1 { glog.Fatal("recover requires block number or hash") } arg := ctx.Args().First() cfg := utils.MakeEthConfig(ClientIdentifier, nodeNameVersion, ctx) blockDb, err := ethdb.NewLDBDatabase(filepath.Join(cfg.DataDir, "blockchain"), cfg.DatabaseCache) if err != nil { glog.Fatalln("could not open db:", err) } var block *types.Block if arg[0] == '#' { block = core.GetBlock(blockDb, core.GetCanonicalHash(blockDb, common.String2Big(arg[1:]).Uint64())) } else { block = core.GetBlock(blockDb, common.HexToHash(arg)) } if block == nil { glog.Fatalln("block not found. Recovery failed") } if err = core.WriteHeadBlockHash(blockDb, block.Hash()); err != nil { glog.Fatalln("block write err", err) } glog.Infof("Recovery succesful. New HEAD %x\n", block.Hash()) }
// validate and queue transactions. func (self *TxPool) add(tx *types.Transaction) error { hash := tx.Hash() if self.pending[hash] != nil { return fmt.Errorf("Known transaction (%x)", hash[:4]) } err := self.validateTx(tx) if err != nil { return err } self.queueTx(hash, tx) if glog.V(logger.Debug) { var toname string if to := tx.To(); to != nil { toname = common.Bytes2Hex(to[:4]) } else { toname = "[NEW_CONTRACT]" } // we can ignore the error here because From is // verified in ValidateTransaction. f, _ := tx.From() from := common.Bytes2Hex(f[:4]) glog.Infof("(t) %x => %s (%v) %x\n", from, toname, tx.Value, hash) } return nil }
func (self *StateObject) SetGasLimit(gasLimit *big.Int) { self.gasPool = new(big.Int).Set(gasLimit) if glog.V(logger.Core) { glog.Infof("%x: gas (+ %v)", self.Address(), self.gasPool) } }
func (c *StateObject) SubBalance(amount *big.Int) { c.SetBalance(new(big.Int).Sub(c.balance, amount)) if glog.V(logger.Core) { glog.Infof("%x: #%d %v (- %v)\n", c.Address(), c.nonce, c.balance, amount) } }
// enqueue schedules a new future import operation, if the block to be imported // has not yet been seen. func (f *Fetcher) enqueue(peer string, block *types.Block) { hash := block.Hash() // Ensure the peer isn't DOSing us count := f.queues[peer] + 1 if count > blockLimit { glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], exceeded allowance (%d)", peer, block.NumberU64(), hash.Bytes()[:4], blockLimit) return } // Discard any past or too distant blocks if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist { glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], distance %d", peer, block.NumberU64(), hash.Bytes()[:4], dist) discardMeter.Mark(1) return } // Schedule the block for future importing if _, ok := f.queued[hash]; !ok { op := &inject{ origin: peer, block: block, } f.queues[peer] = count f.queued[hash] = op f.queue.Push(op, -float32(block.NumberU64())) if glog.V(logger.Debug) { glog.Infof("Peer %s: queued block #%d [%x], total %v", peer, block.NumberU64(), hash.Bytes()[:4], f.queue.Size()) } } }
func (env *Work) commitTransactions(transactions types.Transactions, gasPrice *big.Int, bc *core.BlockChain) { gp := new(core.GasPool).AddGas(env.header.GasLimit) for _, tx := range transactions { // Error may be ignored here. The error has already been checked // during transaction acceptance is the transaction pool. from, _ := tx.From() // Check if it falls within margin. Txs from owned accounts are always processed. if tx.GasPrice().Cmp(gasPrice) < 0 && !env.ownedAccounts.Has(from) { // ignore the transaction and transactor. We ignore the transactor // because nonce will fail after ignoring this transaction so there's // no point env.lowGasTransactors.Add(from) glog.V(logger.Info).Infof("transaction(%x) below gas price (tx=%v ask=%v). All sequential txs from this address(%x) will be ignored\n", tx.Hash().Bytes()[:4], common.CurrencyToString(tx.GasPrice()), common.CurrencyToString(gasPrice), from[:4]) } // Continue with the next transaction if the transaction sender is included in // the low gas tx set. This will also remove the tx and all sequential transaction // from this transactor if env.lowGasTransactors.Has(from) { // add tx to the low gas set. This will be removed at the end of the run // owned accounts are ignored if !env.ownedAccounts.Has(from) { env.lowGasTxs = append(env.lowGasTxs, tx) } continue } // Move on to the next transaction when the transactor is in ignored transactions set // This may occur when a transaction hits the gas limit. When a gas limit is hit and // the transaction is processed (that could potentially be included in the block) it // will throw a nonce error because the previous transaction hasn't been processed. // Therefor we need to ignore any transaction after the ignored one. if env.ignoredTransactors.Has(from) { continue } env.state.StartRecord(tx.Hash(), common.Hash{}, 0) err := env.commitTransaction(tx, bc, gp) switch { case core.IsGasLimitErr(err): // ignore the transactor so no nonce errors will be thrown for this account // next time the worker is run, they'll be picked up again. env.ignoredTransactors.Add(from) glog.V(logger.Detail).Infof("Gas limit reached for (%x) in this block. Continue to try smaller txs\n", from[:4]) case err != nil: env.remove.Add(tx.Hash()) if glog.V(logger.Detail) { glog.Infof("TX (%x) failed, will be removed: %v\n", tx.Hash().Bytes()[:4], err) } default: env.tcount++ } } }
func (self *StateObject) MarkForDeletion() { self.remove = true self.dirty = true if glog.V(logger.Core) { glog.Infof("%x: #%d %v X\n", self.Address(), self.nonce, self.balance) } }
func (self *StateObject) markSuicided() { self.suicided = true if self.onDirty != nil { self.onDirty(self.Address()) self.onDirty = nil } if glog.V(logger.Core) { glog.Infof("%x: #%d %v X\n", self.Address(), self.Nonce(), self.Balance()) } }
func sendJSON(w io.Writer, v interface{}) { if glog.V(logger.Detail) { if payload, err := json.MarshalIndent(v, "", "\t"); err == nil { glog.Infof("Sending payload: %s", payload) } } if err := json.NewEncoder(w).Encode(v); err != nil { glog.V(logger.Error).Infoln("Error sending JSON:", err) } }
func (c *StateObject) SubBalance(amount *big.Int) { if amount.Cmp(common.Big0) == 0 { return } c.SetBalance(new(big.Int).Sub(c.Balance(), amount)) if glog.V(logger.Core) { glog.Infof("%x: #%d %v (- %v)\n", c.Address(), c.Nonce(), c.Balance(), amount) } }
// NewStateObject create a state object whether it exist in the trie or not func (self *StateDB) newStateObject(addr common.Address) *StateObject { if glog.V(logger.Core) { glog.Infof("(+) %x\n", addr) } stateObject := NewStateObject(addr, self.db) self.stateObjects[addr.Str()] = stateObject return stateObject }
// newStateObject creates a state object whether it exists in the state or not func (self *LightState) newStateObject(addr common.Address) *StateObject { if glog.V(logger.Core) { glog.Infof("(+) %x\n", addr) } stateObject := NewStateObject(addr, self.odr) stateObject.SetNonce(StartingNonce) self.stateObjects[addr.Str()] = stateObject return stateObject }
func runProgram(program *Program, pcstart uint64, mem *Memory, stack *stack, env Environment, contract *Contract, input []byte) ([]byte, error) { contract.Input = input var ( pc uint64 = program.mapping[pcstart] instrCount = 0 ) if glog.V(logger.Debug) { glog.Infof("running JIT program %x\n", program.Id[:4]) tstart := time.Now() defer func() { glog.Infof("JIT program %x done. time: %v instrc: %v\n", program.Id[:4], time.Since(tstart), instrCount) }() } homestead := params.IsHomestead(env.BlockNumber()) for pc < uint64(len(program.instructions)) { instrCount++ instr := program.instructions[pc] if instr.Op() == DELEGATECALL && !homestead { return nil, fmt.Errorf("Invalid opcode 0x%x", instr.Op()) } ret, err := instr.do(program, &pc, env, contract, mem, stack) if err != nil { return nil, err } if instr.halts() { return ret, nil } } contract.Input = nil return nil, nil }
// validatePool removes invalid and processed transactions from the main pool. func (pool *TxPool) validatePool() { state := pool.currentState() for hash, tx := range pool.pending { from, _ := tx.From() // err already checked // perform light nonce validation if state.GetNonce(from) > tx.Nonce() { if glog.V(logger.Core) { glog.Infof("removed tx (%x) from pool: low tx nonce\n", hash[:4]) } delete(pool.pending, hash) } } }
// demoteUnexecutables removes invalid and processed transactions from the pools // executable/pending queue and any subsequent transactions that become unexecutable // are moved back into the future queue. func (pool *TxPool) demoteUnexecutables() { // Retrieve the current state to allow nonce and balance checking state, err := pool.currentState() if err != nil { glog.V(logger.Info).Infoln("failed to get current state: %v", err) return } // Iterate over all accounts and demote any non-executable transactions for addr, list := range pool.pending { nonce := state.GetNonce(addr) // Drop all transactions that are deemed too old (low nonce) for _, tx := range list.Forward(nonce) { if glog.V(logger.Core) { glog.Infof("Removed old pending transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Drop all transactions that are too costly (low balance), and queue any invalids back for later drops, invalids := list.Filter(state.GetBalance(addr)) for _, tx := range drops { if glog.V(logger.Core) { glog.Infof("Removed unpayable pending transaction: %v", tx) } delete(pool.all, tx.Hash()) } for _, tx := range invalids { if glog.V(logger.Core) { glog.Infof("Demoting pending transaction: %v", tx) } pool.enqueueTx(tx.Hash(), tx) } // Delete the entire queue entry if it became empty. if list.Empty() { delete(pool.pending, addr) delete(pool.beats, addr) } } }
// diff takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them // to be part of the new canonical chain. func (self *ChainManager) diff(oldBlock, newBlock *types.Block) (types.Blocks, error) { var ( newChain types.Blocks commonBlock *types.Block oldStart = oldBlock newStart = newBlock ) // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // reduce old chain for oldBlock = oldBlock; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash()) { } } else { // reduce new chain and append new chain blocks for inserting later on for newBlock = newBlock; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash()) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return nil, fmt.Errorf("Invalid old chain") } if newBlock == nil { return nil, fmt.Errorf("Invalid new chain") } numSplit := newBlock.Number() for { if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } newChain = append(newChain, newBlock) oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash()), self.GetBlock(newBlock.ParentHash()) if oldBlock == nil { return nil, fmt.Errorf("Invalid old chain") } if newBlock == nil { return nil, fmt.Errorf("Invalid new chain") } } if glog.V(logger.Debug) { commonHash := commonBlock.Hash() glog.Infof("Chain split detected @ %x. Reorganising chain from #%v %x to %x", commonHash[:4], numSplit, oldStart.Hash().Bytes()[:4], newStart.Hash().Bytes()[:4]) } return newChain, nil }
// checkQueue moves transactions that have become processable to main pool. func (pool *TxPool) checkQueue() { state := pool.pendingState var addq txQueue for address, txs := range pool.queue { // guessed nonce is the nonce currently kept by the tx pool (pending state) guessedNonce := state.GetNonce(address) // true nonce is the nonce known by the last state trueNonce := pool.currentState().GetNonce(address) addq := addq[:0] for hash, tx := range txs { if tx.Nonce() < trueNonce { // Drop queued transactions whose nonce is lower than // the account nonce because they have been processed. delete(txs, hash) } else { // Collect the remaining transactions for the next pass. addq = append(addq, txQueueEntry{hash, address, tx}) } } // Find the next consecutive nonce range starting at the // current account nonce. sort.Sort(addq) for i, e := range addq { // start deleting the transactions from the queue if they exceed the limit if i > maxQueued { delete(pool.queue[address], e.hash) continue } if e.Nonce() > guessedNonce { if len(addq)-i > maxQueued { if glog.V(logger.Debug) { glog.Infof("Queued tx limit exceeded for %s. Tx %s removed\n", common.PP(address[:]), common.PP(e.hash[:])) } for j := i + maxQueued; j < len(addq); j++ { delete(txs, addq[j].hash) } } break } delete(txs, e.hash) pool.addTx(e.hash, address, e.Transaction) } // Delete the entire queue entry if it became empty. if len(txs) == 0 { delete(pool.queue, address) } } }
// doRefresh performs a lookup for a random target to keep buckets // full. seed nodes are inserted if the table is empty (initial // bootstrap or discarded faulty peers). func (tab *Table) doRefresh(done chan struct{}) { defer close(done) // The Kademlia paper specifies that the bucket refresh should // perform a lookup in the least recently used bucket. We cannot // adhere to this because the findnode target is a 512bit value // (not hash-sized) and it is not easily possible to generate a // sha3 preimage that falls into a chosen bucket. // We perform a lookup with a random target instead. var target NodeID rand.Read(target[:]) result := tab.Lookup(target) if len(result) > 0 { return } // The table is empty. Load nodes from the database and insert // them. This should yield a few previously seen nodes that are // (hopefully) still alive. seeds := tab.db.querySeeds(seedCount, seedMaxAge) seeds = tab.bondall(append(seeds, tab.nursery...)) if glog.V(logger.Debug) { if len(seeds) == 0 { glog.Infof("no seed nodes found") } for _, n := range seeds { age := time.Since(tab.db.lastPong(n.ID)) glog.Infof("seed node (age %v): %v", age, n) } } tab.mutex.Lock() tab.stuff(seeds) tab.mutex.Unlock() // Finally, do a self lookup to fill up the buckets. tab.Lookup(tab.self.ID) }
// createObject creates a new state object. If there is an existing account with // the given address, it is overwritten and returned as the second return value. func (self *StateDB) createObject(addr common.Address) (newobj, prev *StateObject) { prev = self.GetStateObject(addr) newobj = newObject(self, addr, Account{}, self.MarkStateObjectDirty) newobj.setNonce(StartingNonce) // sets the object to dirty if prev == nil { if glog.V(logger.Core) { glog.Infof("(+) %x\n", addr) } self.journal = append(self.journal, createObjectChange{account: &addr}) } else { self.journal = append(self.journal, resetObjectChange{prev: prev}) } self.setStateObject(newobj) return newobj, prev }
func Start() { go func() { for range time.Tick(15 * time.Second) { mutex.Lock() var sum, tracked = 0, []string{} for what, n := range all { sum += n tracked = append(tracked, fmt.Sprintf("%s:%d", what, n)) } mutex.Unlock() used, _ := fdusage() sort.Strings(tracked) glog.Infof("fd usage %d/%d, tracked %d %v", used, fdlimit(), sum, tracked) } }() }
// WriteBlock writes a block to the database func WriteBlock(db common.Database, block *types.Block) error { tstart := time.Now() enc, _ := rlp.EncodeToBytes((*types.StorageBlock)(block)) key := append(blockHashPre, block.Hash().Bytes()...) err := db.Put(key, enc) if err != nil { glog.Fatal("db write fail:", err) return err } if glog.V(logger.Debug) { glog.Infof("wrote block #%v %s. Took %v\n", block.Number(), common.PP(block.Hash().Bytes()), time.Since(tstart)) } return nil }
// add validates a transaction and inserts it into the non-executable queue for // later pending promotion and execution. func (pool *TxPool) add(tx *types.Transaction) error { // If the transaction is alreayd known, discard it hash := tx.Hash() if pool.all[hash] != nil { return fmt.Errorf("Known transaction: %x", hash[:4]) } // Otherwise ensure basic validation passes and queue it up if err := pool.validateTx(tx); err != nil { return err } pool.enqueueTx(hash, tx) // Print a log message if low enough level is set if glog.V(logger.Debug) { rcpt := "[NEW_CONTRACT]" if to := tx.To(); to != nil { rcpt = common.Bytes2Hex(to[:4]) } from, _ := tx.From() // from already verified during tx validation glog.Infof("(t) 0x%x => %s (%v) %x\n", from[:4], rcpt, tx.Value, hash) } return nil }
// promoteExecutables moves transactions that have become processable from the // future queue to the set of pending transactions. During this process, all // invalidated transactions (low nonce, low balance) are deleted. func (pool *TxPool) promoteExecutables() { // Init delayed since tx pool could have been started before any state sync if pool.pendingState == nil { pool.resetState() } // Retrieve the current state to allow nonce and balance checking state, err := pool.currentState() if err != nil { glog.Errorf("Could not get current state: %v", err) return } // Iterate over all accounts and promote any executable transactions queued := uint64(0) for addr, list := range pool.queue { // Drop all transactions that are deemed too old (low nonce) for _, tx := range list.Forward(state.GetNonce(addr)) { if glog.V(logger.Core) { glog.Infof("Removed old queued transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Drop all transactions that are too costly (low balance) drops, _ := list.Filter(state.GetBalance(addr)) for _, tx := range drops { if glog.V(logger.Core) { glog.Infof("Removed unpayable queued transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Gather all executable transactions and promote them for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) { if glog.V(logger.Core) { glog.Infof("Promoting queued transaction: %v", tx) } pool.promoteTx(addr, tx.Hash(), tx) } // Drop all transactions over the allowed limit for _, tx := range list.Cap(int(maxQueuedPerAccount)) { if glog.V(logger.Core) { glog.Infof("Removed cap-exceeding queued transaction: %v", tx) } delete(pool.all, tx.Hash()) } queued += uint64(list.Len()) // Delete the entire queue entry if it became empty. if list.Empty() { delete(pool.queue, addr) } } // If we've queued more transactions than the hard limit, drop oldest ones if queued > maxQueuedInTotal { // Sort all accounts with queued transactions by heartbeat addresses := make(addresssByHeartbeat, 0, len(pool.queue)) for addr, _ := range pool.queue { addresses = append(addresses, addressByHeartbeat{addr, pool.beats[addr]}) } sort.Sort(addresses) // Drop transactions until the total is below the limit for drop := queued - maxQueuedInTotal; drop > 0; { addr := addresses[len(addresses)-1] list := pool.queue[addr.address] addresses = addresses[:len(addresses)-1] // Drop all transactions if they are less than the overflow if size := uint64(list.Len()); size <= drop { for _, tx := range list.Flatten() { pool.removeTx(tx.Hash()) } drop -= size continue } // Otherwise drop only last few transactions txs := list.Flatten() for i := len(txs) - 1; i >= 0 && drop > 0; i-- { pool.removeTx(txs[i].Hash()) drop-- } } } }
// checkQueue moves transactions that have become processable to main pool. func (pool *TxPool) checkQueue() { // init delayed since tx pool could have been started before any state sync if pool.pendingState == nil { pool.resetState() } var promote txQueue for address, txs := range pool.queue { currentState, err := pool.currentState() if err != nil { glog.Errorf("could not get current state: %v", err) return } balance := currentState.GetBalance(address) var ( guessedNonce = pool.pendingState.GetNonce(address) // nonce currently kept by the tx pool (pending state) trueNonce = currentState.GetNonce(address) // nonce known by the last state ) promote = promote[:0] for hash, tx := range txs { // Drop processed or out of fund transactions if tx.Nonce() < trueNonce || balance.Cmp(tx.Cost()) < 0 { if glog.V(logger.Core) { glog.Infof("removed tx (%v) from pool queue: low tx nonce or out of funds\n", tx) } delete(txs, hash) continue } // Collect the remaining transactions for the next pass. promote = append(promote, txQueueEntry{hash, address, tx}) } // Find the next consecutive nonce range starting at the current account nonce, // pushing the guessed nonce forward if we add consecutive transactions. sort.Sort(promote) for i, entry := range promote { // If we reached a gap in the nonces, enforce transaction limit and stop if entry.Nonce() > guessedNonce { if len(promote)-i > maxQueued { if glog.V(logger.Debug) { glog.Infof("Queued tx limit exceeded for %s. Tx %s removed\n", common.PP(address[:]), common.PP(entry.hash[:])) } for _, drop := range promote[i+maxQueued:] { delete(txs, drop.hash) } } break } // Otherwise promote the transaction and move the guess nonce if needed pool.addTx(entry.hash, address, entry.Transaction) delete(txs, entry.hash) if entry.Nonce() == guessedNonce { guessedNonce++ } } // Delete the entire queue entry if it became empty. if len(txs) == 0 { delete(pool.queue, address) } } }
// reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them // to be part of the new canonical chain and accumulates potential missing transactions and post an // event about them func (self *BlockChain) reorg(oldBlock, newBlock *types.Block) error { var ( newChain types.Blocks commonBlock *types.Block oldStart = oldBlock newStart = newBlock deletedTxs types.Transactions ) // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // reduce old chain for oldBlock = oldBlock; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash()) { deletedTxs = append(deletedTxs, oldBlock.Transactions()...) } } else { // reduce new chain and append new chain blocks for inserting later on for newBlock = newBlock; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash()) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } numSplit := newBlock.Number() for { if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } newChain = append(newChain, newBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash()), self.GetBlock(newBlock.ParentHash()) if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } } if glog.V(logger.Debug) { commonHash := commonBlock.Hash() glog.Infof("Chain split detected @ %x. Reorganising chain from #%v %x to %x", commonHash[:4], numSplit, oldStart.Hash().Bytes()[:4], newStart.Hash().Bytes()[:4]) } var addedTxs types.Transactions // insert blocks. Order does not matter. Last block will be written in ImportChain itself which creates the new head properly for _, block := range newChain { // insert the block in the canonical way, re-writing history self.insert(block) // write canonical receipts and transactions if err := WriteTransactions(self.chainDb, block); err != nil { return err } receipts := GetBlockReceipts(self.chainDb, block.Hash()) // write receipts if err := WriteReceipts(self.chainDb, receipts); err != nil { return err } // Write map map bloom filters if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil { return err } addedTxs = append(addedTxs, block.Transactions()...) } // calculate the difference between deleted and added transactions diff := types.TxDifference(deletedTxs, addedTxs) // When transactions get deleted from the database that means the // receipts that were created in the fork must also be deleted for _, tx := range diff { DeleteReceipt(self.chainDb, tx.Hash()) DeleteTransaction(self.chainDb, tx.Hash()) } // Must be posted in a goroutine because of the transaction pool trying // to acquire the chain manager lock go self.eventMux.Post(RemovedTransactionEvent{diff}) return nil }
// InsertChain will attempt to insert the given chain in to the canonical chain or, otherwise, create a fork. It an error is returned // it will return the index number of the failing block as well an error describing what went wrong (for possible errors see core/errors.go). func (self *BlockChain) InsertChain(chain types.Blocks) (int, error) { self.wg.Add(1) defer self.wg.Done() self.chainmu.Lock() defer self.chainmu.Unlock() // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( stats struct{ queued, processed, ignored int } events = make([]interface{}, 0, len(chain)) coalescedLogs vm.Logs tstart = time.Now() nonceChecked = make([]bool, len(chain)) ) // Start the parallel nonce verifier. nonceAbort, nonceResults := verifyNoncesFromBlocks(self.pow, chain) defer close(nonceAbort) txcount := 0 for i, block := range chain { if atomic.LoadInt32(&self.procInterrupt) == 1 { glog.V(logger.Debug).Infoln("Premature abort during block chain processing") break } bstart := time.Now() // Wait for block i's nonce to be verified before processing // its state transition. for !nonceChecked[i] { r := <-nonceResults nonceChecked[r.index] = true if !r.valid { block := chain[r.index] return r.index, &BlockNonceErr{Hash: block.Hash(), Number: block.Number(), Nonce: block.Nonce()} } } if BadHashes[block.Hash()] { err := BadHashError(block.Hash()) reportBlock(block, err) return i, err } // Stage 1 validation of the block using the chain's validator // interface. err := self.Validator().ValidateBlock(block) if err != nil { if IsKnownBlockErr(err) { stats.ignored++ continue } if err == BlockFutureErr { // Allow up to MaxFuture second in the future blocks. If this limit // is exceeded the chain is discarded and processed at a later time // if given. max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks) if block.Time().Cmp(max) == 1 { return i, fmt.Errorf("%v: BlockFutureErr, %v > %v", BlockFutureErr, block.Time(), max) } self.futureBlocks.Add(block.Hash(), block) stats.queued++ continue } if IsParentErr(err) && self.futureBlocks.Contains(block.ParentHash()) { self.futureBlocks.Add(block.Hash(), block) stats.queued++ continue } reportBlock(block, err) return i, err } // Create a new statedb using the parent block and report an // error if it fails. statedb, err := state.New(self.GetBlock(block.ParentHash()).Root(), self.chainDb) if err != nil { reportBlock(block, err) return i, err } // Process block using the parent state as reference point. receipts, logs, usedGas, err := self.processor.Process(block, statedb) if err != nil { reportBlock(block, err) return i, err } // Validate the state using the default validator err = self.Validator().ValidateState(block, self.GetBlock(block.ParentHash()), statedb, receipts, usedGas) if err != nil { reportBlock(block, err) return i, err } // Write state changes to database _, err = statedb.Commit() if err != nil { return i, err } // coalesce logs for later processing coalescedLogs = append(coalescedLogs, logs...) if err := WriteBlockReceipts(self.chainDb, block.Hash(), receipts); err != nil { return i, err } txcount += len(block.Transactions()) // write the block to the chain and get the status status, err := self.WriteBlock(block) if err != nil { return i, err } switch status { case CanonStatTy: if glog.V(logger.Debug) { glog.Infof("[%v] inserted block #%d (%d TXs %v G %d UNCs) (%x...). Took %v\n", time.Now().UnixNano(), block.Number(), len(block.Transactions()), block.GasUsed(), len(block.Uncles()), block.Hash().Bytes()[0:4], time.Since(bstart)) } events = append(events, ChainEvent{block, block.Hash(), logs}) // This puts transactions in a extra db for rpc if err := WriteTransactions(self.chainDb, block); err != nil { return i, err } // store the receipts if err := WriteReceipts(self.chainDb, receipts); err != nil { return i, err } // Write map map bloom filters if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil { return i, err } case SideStatTy: if glog.V(logger.Detail) { glog.Infof("inserted forked block #%d (TD=%v) (%d TXs %d UNCs) (%x...). Took %v\n", block.Number(), block.Difficulty(), len(block.Transactions()), len(block.Uncles()), block.Hash().Bytes()[0:4], time.Since(bstart)) } events = append(events, ChainSideEvent{block, logs}) case SplitStatTy: events = append(events, ChainSplitEvent{block, logs}) } stats.processed++ } if (stats.queued > 0 || stats.processed > 0 || stats.ignored > 0) && bool(glog.V(logger.Info)) { tend := time.Since(tstart) start, end := chain[0], chain[len(chain)-1] glog.Infof("imported %d block(s) (%d queued %d ignored) including %d txs in %v. #%v [%x / %x]\n", stats.processed, stats.queued, stats.ignored, txcount, tend, end.Number(), start.Hash().Bytes()[:4], end.Hash().Bytes()[:4]) } go self.postChainEvents(events, coalescedLogs) return 0, nil }
// Run loops and evaluates the contract's code with the given input data func (self *Vm) Run(contract *Contract, input []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). contract.UseGas(contract.Gas) ret = contract.Return(nil) } }() if contract.CodeAddr != nil { if p := Precompiled[contract.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, input, contract) } } // Don't bother with the execution if there's no code. if len(contract.Code) == 0 { return contract.Return(nil), nil } var ( codehash = crypto.Sha3Hash(contract.Code) // codehash is used when doing jump dest caching program *Program ) if EnableJit { // If the JIT is enabled check the status of the JIT program, // if it doesn't exist compile a new program in a seperate // goroutine or wait for compilation to finish if the JIT is // forced. switch GetProgramStatus(codehash) { case progReady: return RunProgram(GetProgram(codehash), self.env, contract, input) case progUnknown: if ForceJit { // Create and compile program program = NewProgram(contract.Code) perr := CompileProgram(program) if perr == nil { return RunProgram(program, self.env, contract, input) } glog.V(logger.Info).Infoln("error compiling program", err) } else { // create and compile the program. Compilation // is done in a seperate goroutine program = NewProgram(contract.Code) go func() { err := CompileProgram(program) if err != nil { glog.V(logger.Info).Infoln("error compiling program", err) return } }() } } } var ( caller = contract.caller code = contract.Code instrCount = 0 op OpCode // current opcode mem = NewMemory() // bound memory stack = newstack() // local stack statedb = self.env.Db() // current state // For optimisation reason we're using uint64 as the program counter. // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible. pc = uint64(0) // program counter // jump evaluates and checks whether the given jump destination is a valid one // if valid move the `pc` otherwise return an error. jump = func(from uint64, to *big.Int) error { if !contract.jumpdests.has(codehash, code, to) { nop := contract.GetOp(to.Uint64()) return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } pc = to.Uint64() return nil } newMemSize *big.Int cost *big.Int ) contract.Input = input // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { self.log(pc, op, contract.Gas, cost, mem, stack, contract, err) } }() if glog.V(logger.Debug) { glog.Infof("running byte VM %x\n", codehash[:4]) tstart := time.Now() defer func() { glog.Infof("byte VM %x done. time: %v instrc: %v\n", codehash[:4], time.Since(tstart), instrCount) }() } for ; ; instrCount++ { /* if EnableJit && it%100 == 0 { if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady { // move execution fmt.Println("moved", it) glog.V(logger.Info).Infoln("Moved execution to JIT") return runProgram(program, pc, mem, stack, self.env, contract, input) } } */ // Get the memory location of pc op = contract.GetOp(pc) // calculate the new memory size and gas price for the current executing opcode newMemSize, cost, err = calculateGasAndSize(self.env, contract, caller, op, statedb, mem, stack) if err != nil { return nil, err } // Use the calculated gas. When insufficient gas is present, use all gas and return an // Out Of Gas error if !contract.UseGas(cost) { return nil, OutOfGasError } // Resize the memory calculated previously mem.Resize(newMemSize.Uint64()) // Add a log message self.log(pc, op, contract.Gas, cost, mem, stack, contract, nil) if opPtr := jumpTable[op]; opPtr.valid { if opPtr.fn != nil { opPtr.fn(instruction{}, &pc, self.env, contract, mem, stack) } else { switch op { case PC: opPc(instruction{data: new(big.Int).SetUint64(pc)}, &pc, self.env, contract, mem, stack) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.GetPtr(offset.Int64(), size.Int64()) return contract.Return(ret), nil case SUICIDE: opSuicide(instruction{}, nil, self.env, contract, mem, stack) fallthrough case STOP: // Stop the contract return contract.Return(nil), nil } } } else { return nil, fmt.Errorf("Invalid opcode %x", op) } pc++ } }