Example #1
0
func (sm *StackMachine) popPrefixRange() fdb.ExactRange {
	er, e := fdb.PrefixRange(sm.waitAndPop().item.([]byte))
	if e != nil {
		panic(e)
	}
	return er
}
Example #2
0
func ExamplePrefixRange() {
	_ = fdb.APIVersion(100)
	db, _ := fdb.OpenDefault()
	tr, _ := db.CreateTransaction()

	// Clear and initialize data in this transaction. In examples we do not
	// commit transactions to avoid mutating a real database.
	tr.ClearRange(fdb.KeyRange{fdb.Key(""), fdb.Key{0xFF}})
	tr.Set(fdb.Key("alpha"), []byte("1"))
	tr.Set(fdb.Key("alphabetA"), []byte("2"))
	tr.Set(fdb.Key("alphabetB"), []byte("3"))
	tr.Set(fdb.Key("alphabetize"), []byte("4"))
	tr.Set(fdb.Key("beta"), []byte("5"))

	// Construct the range of all keys beginning with "alphabet"
	pr, _ := fdb.PrefixRange([]byte("alphabet"))

	// Read and process the range
	kvs, _ := tr.GetRange(pr, fdb.RangeOptions{}).GetSliceWithError()
	for _, kv := range kvs {
		fmt.Printf("%s: %s\n", string(kv.Key), string(kv.Value))
	}

	// Output:
	// alphabetA: 2
	// alphabetB: 3
	// alphabetize: 4
}
Example #3
0
func (dl directoryLayer) isPrefixFree(rtr fdb.ReadTransaction, prefix []byte) (bool, error) {
	if len(prefix) == 0 {
		return false, nil
	}

	nck, e := dl.nodeContainingKey(rtr, prefix)
	if e != nil {
		return false, e
	}
	if nck != nil {
		return false, nil
	}

	kr, e := fdb.PrefixRange(prefix)
	if e != nil {
		return false, e
	}

	bk, ek := kr.FDBRangeKeys()
	if !isRangeEmpty(rtr, fdb.KeyRange{dl.nodeSS.Pack(tuple.Tuple{bk}), dl.nodeSS.Pack(tuple.Tuple{ek})}) {
		return false, nil
	}

	return true, nil
}
Example #4
0
func (dl directoryLayer) removeRecursive(tr fdb.Transaction, node subspace.Subspace) error {
	nodes := dl.subdirNodes(tr, node)
	for i := range nodes {
		if e := dl.removeRecursive(tr, nodes[i]); e != nil {
			return e
		}
	}

	p, e := dl.nodeSS.Unpack(node)
	if e != nil {
		return e
	}
	kr, e := fdb.PrefixRange(p[0].([]byte))
	if e != nil {
		return e
	}

	tr.ClearRange(kr)
	tr.ClearRange(node)

	return nil
}
Example #5
0
func ExamplePrefixRange() {
	fdb.MustAPIVersion(200)
	db := fdb.MustOpenDefault()

	tr, e := db.CreateTransaction()
	if e != nil {
		fmt.Printf("Unable to create transaction: %v\n", e)
		return
	}

	// Clear and initialize data in this transaction. In examples we do not
	// commit transactions to avoid mutating a real database.
	tr.ClearRange(fdb.KeyRange{fdb.Key(""), fdb.Key{0xFF}})
	tr.Set(fdb.Key("alpha"), []byte("1"))
	tr.Set(fdb.Key("alphabetA"), []byte("2"))
	tr.Set(fdb.Key("alphabetB"), []byte("3"))
	tr.Set(fdb.Key("alphabetize"), []byte("4"))
	tr.Set(fdb.Key("beta"), []byte("5"))

	// Construct the range of all keys beginning with "alphabet". It is safe to
	// ignore the error return from PrefixRange unless the provided prefix might
	// consist entirely of zero or more 0xFF bytes.
	pr, _ := fdb.PrefixRange([]byte("alphabet"))

	// Read and process the range
	kvs, e := tr.GetRange(pr, fdb.RangeOptions{}).GetSliceWithError()
	if e != nil {
		fmt.Printf("Unable to read range: %v\n", e)
	}
	for _, kv := range kvs {
		fmt.Printf("%s: %s\n", string(kv.Key), string(kv.Value))
	}

	// Output:
	// alphabetA: 2
	// alphabetB: 3
	// alphabetize: 4
}
Example #6
0
func (sm *StackMachine) processInst(idx int, inst tuple.Tuple) {
	defer func() {
		if r := recover(); r != nil {
			switch r := r.(type) {
			case fdb.Error:
				sm.store(idx, []byte(tuple.Tuple{[]byte("ERROR"), []byte(fmt.Sprintf("%d", r.Code))}.Pack()))
			default:
				panic(r)
			}
		}
	}()

	var e error

	op := inst[0].(string)
	if sm.verbose {
		fmt.Printf("%d. Instruction is %s (%v)\n", idx, op, sm.prefix)
		fmt.Printf("Stack from [")
		sm.dumpStack()
		fmt.Printf(" ]\n")
	}

	var t fdb.Transactor
	var rt fdb.ReadTransactor

	var isDB bool

	switch {
	case strings.HasSuffix(op, "_SNAPSHOT"):
		rt = sm.tr.Snapshot()
		op = op[:len(op)-9]
	case strings.HasSuffix(op, "_DATABASE"):
		t = db
		rt = db
		op = op[:len(op)-9]
		isDB = true
	default:
		t = sm.tr
		rt = sm.tr
	}

	switch {
	case op == "PUSH":
		sm.store(idx, inst[1])
	case op == "DUP":
		entry := sm.stack[len(sm.stack)-1]
		sm.store(entry.idx, entry.item)
	case op == "EMPTY_STACK":
		sm.stack = []stackEntry{}
		sm.stack = make([]stackEntry, 0)
	case op == "SWAP":
		idx := sm.waitAndPop().item.(int64)
		sm.stack[len(sm.stack)-1], sm.stack[len(sm.stack)-1-int(idx)] = sm.stack[len(sm.stack)-1-int(idx)], sm.stack[len(sm.stack)-1]
	case op == "POP":
		sm.stack = sm.stack[:len(sm.stack)-1]
	case op == "SUB":
		sm.store(idx, sm.waitAndPop().item.(int64)-sm.waitAndPop().item.(int64))
	case op == "NEW_TRANSACTION":
		sm.tr, e = db.CreateTransaction()
		if e != nil {
			panic(e)
		}
	case op == "ON_ERROR":
		sm.store(idx, sm.tr.OnError(fdb.Error{int(sm.waitAndPop().item.(int64))}))
	case op == "GET_READ_VERSION":
		_, e = rt.ReadTransact(func(rtr fdb.ReadTransaction) (interface{}, error) {
			sm.lastVersion = rtr.GetReadVersion().MustGet()
			sm.store(idx, []byte("GOT_READ_VERSION"))
			return nil, nil
		})
		if e != nil {
			panic(e)
		}
	case op == "SET":
		sm.executeMutation(t, func(tr fdb.Transaction) (interface{}, error) {
			tr.Set(fdb.Key(sm.waitAndPop().item.([]byte)), sm.waitAndPop().item.([]byte))
			return nil, nil
		}, isDB, idx)
	case op == "LOG_STACK":
		prefix := sm.waitAndPop().item.([]byte)
		for i := len(sm.stack) - 1; i >= 0; i-- {
			if i%100 == 0 {
				sm.tr.Commit().MustGet()
			}

			el := sm.waitAndPop()

			var keyt tuple.Tuple
			keyt = append(keyt, int64(i))
			keyt = append(keyt, int64(el.idx))
			pk := append(prefix, keyt.Pack()...)

			var valt tuple.Tuple
			valt = append(valt, el.item)
			pv := valt.Pack()

			vl := 40000
			if len(pv) < vl {
				vl = len(pv)
			}

			sm.tr.Set(fdb.Key(pk), pv[:vl])
		}
		sm.tr.Commit().MustGet()
	case op == "GET":
		_, e = rt.ReadTransact(func(rtr fdb.ReadTransaction) (interface{}, error) {
			sm.store(idx, rtr.Get(fdb.Key(sm.waitAndPop().item.([]byte))))
			return nil, nil
		})
		if e != nil {
			panic(e)
		}
	case op == "COMMIT":
		sm.store(idx, sm.tr.Commit())
	case op == "RESET":
		sm.tr.Reset()
	case op == "CLEAR":
		sm.executeMutation(t, func(tr fdb.Transaction) (interface{}, error) {
			tr.Clear(fdb.Key(sm.waitAndPop().item.([]byte)))
			return nil, nil
		}, isDB, idx)
	case op == "SET_READ_VERSION":
		sm.tr.SetReadVersion(sm.lastVersion)
	case op == "WAIT_FUTURE":
		entry := sm.waitAndPop()
		sm.store(entry.idx, entry.item)
	case op == "GET_COMMITTED_VERSION":
		sm.lastVersion, e = sm.tr.GetCommittedVersion()
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("GOT_COMMITTED_VERSION"))
	case op == "GET_KEY":
		sel := sm.popSelector()
		_, e = rt.ReadTransact(func(rtr fdb.ReadTransaction) (interface{}, error) {
			sm.store(idx, rtr.GetKey(sel))
			return nil, nil
		})
		if e != nil {
			panic(e)
		}
	case strings.HasPrefix(op, "GET_RANGE"):
		var r fdb.Range

		switch op[9:] {
		case "_STARTS_WITH":
			r = sm.popPrefixRange()
		case "_SELECTOR":
			r = fdb.SelectorRange{sm.popSelector(), sm.popSelector()}
		case "":
			r = sm.popKeyRange()
		}

		ro := sm.popRangeOptions()
		_, e = rt.ReadTransact(func(rtr fdb.ReadTransaction) (interface{}, error) {
			sm.pushRange(idx, rtr.GetRange(r, ro).GetSliceOrPanic())
			return nil, nil
		})
		if e != nil {
			panic(e)
		}
	case strings.HasPrefix(op, "CLEAR_RANGE"):
		var er fdb.ExactRange

		switch op[11:] {
		case "_STARTS_WITH":
			er = sm.popPrefixRange()
		case "":
			er = sm.popKeyRange()
		}

		sm.executeMutation(t, func(tr fdb.Transaction) (interface{}, error) {
			tr.ClearRange(er)
			return nil, nil
		}, isDB, idx)
	case op == "TUPLE_PACK":
		var t tuple.Tuple
		count := sm.waitAndPop().item.(int64)
		for i := 0; i < int(count); i++ {
			t = append(t, sm.waitAndPop().item)
		}
		sm.store(idx, []byte(t.Pack()))
	case op == "TUPLE_UNPACK":
		t, e := tuple.Unpack(fdb.Key(sm.waitAndPop().item.([]byte)))
		if e != nil {
			panic(e)
		}
		for _, el := range t {
			sm.store(idx, []byte(tuple.Tuple{el}.Pack()))
		}
	case op == "TUPLE_RANGE":
		var t tuple.Tuple
		count := sm.waitAndPop().item.(int64)
		for i := 0; i < int(count); i++ {
			t = append(t, sm.waitAndPop().item)
		}
		bk, ek := t.FDBRangeKeys()
		sm.store(idx, []byte(bk.FDBKey()))
		sm.store(idx, []byte(ek.FDBKey()))
	case op == "START_THREAD":
		newsm := newStackMachine(sm.waitAndPop().item.([]byte), verbose, sm.de)
		sm.threads.Add(1)
		go func() {
			newsm.Run()
			sm.threads.Done()
		}()
	case op == "WAIT_EMPTY":
		prefix := sm.waitAndPop().item.([]byte)
		er, e := fdb.PrefixRange(prefix)
		if e != nil {
			panic(e)
		}
		db.Transact(func(tr fdb.Transaction) (interface{}, error) {
			v := tr.GetRange(er, fdb.RangeOptions{}).GetSliceOrPanic()
			if len(v) != 0 {
				panic(fdb.Error{1020})
			}
			return nil, nil
		})
		sm.store(idx, []byte("WAITED_FOR_EMPTY"))
	case op == "READ_CONFLICT_RANGE":
		e = sm.tr.AddReadConflictRange(fdb.KeyRange{fdb.Key(sm.waitAndPop().item.([]byte)), fdb.Key(sm.waitAndPop().item.([]byte))})
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_RANGE"))
	case op == "WRITE_CONFLICT_RANGE":
		e = sm.tr.AddWriteConflictRange(fdb.KeyRange{fdb.Key(sm.waitAndPop().item.([]byte)), fdb.Key(sm.waitAndPop().item.([]byte))})
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_RANGE"))
	case op == "READ_CONFLICT_KEY":
		e = sm.tr.AddReadConflictKey(fdb.Key(sm.waitAndPop().item.([]byte)))
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_KEY"))
	case op == "WRITE_CONFLICT_KEY":
		e = sm.tr.AddWriteConflictKey(fdb.Key(sm.waitAndPop().item.([]byte)))
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_KEY"))
	case op == "ATOMIC_OP":
		opname := strings.Replace(strings.Title(strings.Replace(strings.ToLower(sm.waitAndPop().item.(string)), "_", " ", -1)), " ", "", -1)
		key := fdb.Key(sm.waitAndPop().item.([]byte))
		value := sm.waitAndPop().item.([]byte)
		sm.executeMutation(t, func(tr fdb.Transaction) (interface{}, error) {
			reflect.ValueOf(tr).MethodByName(opname).Call([]reflect.Value{reflect.ValueOf(key), reflect.ValueOf(value)})
			return nil, nil
		}, isDB, idx)
	case op == "DISABLE_WRITE_CONFLICT":
		sm.tr.Options().SetNextWriteNoWriteConflictRange()
	case op == "CANCEL":
		sm.tr.Cancel()
	case op == "UNIT_TESTS":
		db.Options().SetLocationCacheSize(100001)
		db.Options().SetMaxWatches(10001)

		tr, e := db.CreateTransaction()
		if e != nil {
			panic(e)
		}

		tr.Options().SetPrioritySystemImmediate()
		tr.Options().SetPriorityBatch()
		tr.Options().SetCausalReadRisky()
		tr.Options().SetCausalWriteRisky()
		tr.Options().SetReadYourWritesDisable()
		tr.Options().SetReadAheadDisable()
		tr.Options().SetReadSystemKeys()
		tr.Options().SetAccessSystemKeys()
		tr.Options().SetDurabilityDevNullIsWebScale()
		tr.Options().SetTimeout(1000)
		tr.Options().SetRetryLimit(5)
		tr.Options().SetMaxRetryDelay(100)

		tr.Get(fdb.Key("\xff")).MustGet()
		tr.Commit().MustGet()

		sm.testWatches()
		sm.testLocality()

	case strings.HasPrefix(op, "DIRECTORY_"):
		sm.de.processOp(sm, op[10:], isDB, idx, t, rt)
	default:
		log.Fatalf("Unhandled operation %s\n", string(inst[0].([]byte)))
	}

	if sm.verbose {
		fmt.Printf("        to [")
		sm.dumpStack()
		fmt.Printf(" ]\n\n")
	}

	runtime.Gosched()
}
Example #7
0
func (sm *StackMachine) processInst(idx int, inst tuple.Tuple) {
	defer func() {
		if r := recover(); r != nil {
			switch r := r.(type) {
			case fdb.Error:
				sm.store(idx, tuple.Tuple{[]byte("ERROR"), []byte(fmt.Sprintf("%d", int(r)))}.Pack())
			default:
				panic(r)
			}
		}
	}()

	var e error

	op := string(inst[0].([]byte))
	if sm.verbose {
		fmt.Printf("Instruction is %s (%v)\n", op, sm.prefix)
		fmt.Printf("Stack from [")
		sm.dumpStack()
		fmt.Printf(" ]\n")
	}

	var obj interface{}
	switch {
	case strings.HasSuffix(op, "_SNAPSHOT"):
		obj = sm.tr.Snapshot()
		op = op[:len(op)-9]
	case strings.HasSuffix(op, "_DATABASE"):
		obj = db
		op = op[:len(op)-9]
	default:
		obj = sm.tr
	}

	switch string(op) {
	case "PUSH":
		sm.store(idx, inst[1])
	case "DUP":
		entry := sm.stack[len(sm.stack)-1]
		sm.store(entry.idx, entry.item)
	case "EMPTY_STACK":
		sm.stack = []stackEntry{}
		sm.stack = make([]stackEntry, 0)
	case "SWAP":
		idx := sm.waitAndPop().item.(int64)
		sm.stack[len(sm.stack)-1], sm.stack[len(sm.stack)-1-int(idx)] = sm.stack[len(sm.stack)-1-int(idx)], sm.stack[len(sm.stack)-1]
	case "POP":
		sm.stack = sm.stack[:len(sm.stack)-1]
	case "SUB":
		sm.store(idx, sm.waitAndPop().item.(int64)-sm.waitAndPop().item.(int64))
	case "NEW_TRANSACTION":
		sm.tr, e = db.CreateTransaction()
		if e != nil {
			panic(e)
		}
	case "ON_ERROR":
		sm.store(idx, sm.tr.OnError(fdb.Error(int(sm.waitAndPop().item.(int64)))))
	case "GET_READ_VERSION":
		sm.lastVersion = obj.(fdb.ReadTransaction).GetReadVersion().GetOrPanic()
		sm.store(idx, []byte("GOT_READ_VERSION"))
	case "SET":
		switch o := obj.(type) {
		case fdb.Database:
			e = o.Set(fdb.Key(sm.waitAndPop().item.([]byte)), sm.waitAndPop().item.([]byte))
			if e != nil {
				panic(e)
			}
			sm.store(idx, []byte("RESULT_NOT_PRESENT"))
		case fdb.Transaction:
			o.Set(fdb.Key(sm.waitAndPop().item.([]byte)), sm.waitAndPop().item.([]byte))
		}
	case "LOG_STACK":
		prefix := sm.waitAndPop().item.([]byte)
		for i := len(sm.stack) - 1; i >= 0; i-- {
			if i%100 == 0 {
				sm.tr.Commit().GetOrPanic()
			}

			el := sm.waitAndPop()

			var keyt tuple.Tuple
			keyt = append(keyt, int64(i))
			keyt = append(keyt, int64(el.idx))
			pk := append(prefix, keyt.Pack()...)

			var valt tuple.Tuple
			valt = append(valt, el.item)
			pv := valt.Pack()

			vl := 40000
			if len(pv) < vl {
				vl = len(pv)
			}

			sm.tr.Set(fdb.Key(pk), pv[:vl])
		}
		sm.tr.Commit().GetOrPanic()
	case "GET":
		switch o := obj.(type) {
		case fdb.Database:
			v, e := db.Get(fdb.Key(sm.waitAndPop().item.([]byte)))
			if e != nil {
				panic(e)
			}
			if v != nil {
				sm.store(idx, v)
			} else {
				sm.store(idx, []byte("RESULT_NOT_PRESENT"))
			}
		case fdb.ReadTransaction:
			sm.store(idx, o.Get(fdb.Key(sm.waitAndPop().item.([]byte))))
		}
	case "COMMIT":
		sm.store(idx, sm.tr.Commit())
	case "RESET":
		sm.tr.Reset()
	case "CLEAR":
		switch o := obj.(type) {
		case fdb.Database:
			e := db.Clear(fdb.Key(sm.waitAndPop().item.([]byte)))
			if e != nil {
				panic(e)
			}
			sm.store(idx, []byte("RESULT_NOT_PRESENT"))
		case fdb.Transaction:
			o.Clear(fdb.Key(sm.waitAndPop().item.([]byte)))
		}
	case "SET_READ_VERSION":
		sm.tr.SetReadVersion(sm.lastVersion)
	case "WAIT_FUTURE":
		entry := sm.waitAndPop()
		sm.store(entry.idx, entry.item)
	case "GET_COMMITTED_VERSION":
		sm.lastVersion, e = sm.tr.GetCommittedVersion()
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("GOT_COMMITTED_VERSION"))
	case "GET_KEY":
		sel := fdb.KeySelector{fdb.Key(sm.waitAndPop().item.([]byte)), int64ToBool(sm.waitAndPop().item.(int64)), int(sm.waitAndPop().item.(int64))}
		switch o := obj.(type) {
		case fdb.Database:
			v, e := o.GetKey(sel)
			if e != nil {
				panic(e)
			}
			sm.store(idx, []byte(v))
		case fdb.ReadTransaction:
			sm.store(idx, o.GetKey(sel))
		}
	case "GET_RANGE":
		begin := fdb.Key(sm.waitAndPop().item.([]byte))
		end := fdb.Key(sm.waitAndPop().item.([]byte))
		var limit int
		switch l := sm.waitAndPop().item.(type) {
		case int64:
			limit = int(l)
		}
		reverse := int64ToBool(sm.waitAndPop().item.(int64))
		mode := sm.waitAndPop().item.(int64)
		switch o := obj.(type) {
		case fdb.Database:
			v, e := db.GetRange(fdb.KeyRange{begin, end}, fdb.RangeOptions{Limit: int(limit), Reverse: reverse, Mode: fdb.StreamingMode(mode + 1)})
			if e != nil {
				panic(e)
			}
			sm.pushRange(idx, v)
		case fdb.ReadTransaction:
			sm.pushRange(idx, o.GetRange(fdb.KeyRange{begin, end}, fdb.RangeOptions{Limit: int(limit), Reverse: reverse, Mode: fdb.StreamingMode(mode + 1)}).GetSliceOrPanic())
		}
	case "CLEAR_RANGE":
		switch o := obj.(type) {
		case fdb.Database:
			e := o.ClearRange(fdb.KeyRange{fdb.Key(sm.waitAndPop().item.([]byte)), fdb.Key(sm.waitAndPop().item.([]byte))})
			if e != nil {
				panic(e)
			}
			sm.store(idx, []byte("RESULT_NOT_PRESENT"))
		case fdb.Transaction:
			o.ClearRange(fdb.KeyRange{fdb.Key(sm.waitAndPop().item.([]byte)), fdb.Key(sm.waitAndPop().item.([]byte))})
		}
	case "GET_RANGE_STARTS_WITH":
		prefix := sm.waitAndPop().item.([]byte)
		var limit int
		switch l := sm.waitAndPop().item.(type) {
		case int64:
			limit = int(l)
		}
		reverse := int64ToBool(sm.waitAndPop().item.(int64))
		mode := sm.waitAndPop().item.(int64)
		er, e := fdb.PrefixRange(prefix)
		if e != nil {
			panic(e)
		}
		switch o := obj.(type) {
		case fdb.Database:
			v, e := db.GetRange(er, fdb.RangeOptions{Limit: int(limit), Reverse: reverse, Mode: fdb.StreamingMode(mode + 1)})
			if e != nil {
				panic(e)
			}
			sm.pushRange(idx, v)
		case fdb.ReadTransaction:
			sm.pushRange(idx, o.GetRange(er, fdb.RangeOptions{Limit: int(limit), Reverse: reverse, Mode: fdb.StreamingMode(mode + 1)}).GetSliceOrPanic())
		}
	case "GET_RANGE_SELECTOR":
		begin := fdb.KeySelector{Key: fdb.Key(sm.waitAndPop().item.([]byte)), OrEqual: int64ToBool(sm.waitAndPop().item.(int64)), Offset: int(sm.waitAndPop().item.(int64))}
		end := fdb.KeySelector{Key: fdb.Key(sm.waitAndPop().item.([]byte)), OrEqual: int64ToBool(sm.waitAndPop().item.(int64)), Offset: int(sm.waitAndPop().item.(int64))}
		var limit int
		switch l := sm.waitAndPop().item.(type) {
		case int64:
			limit = int(l)
		}
		reverse := int64ToBool(sm.waitAndPop().item.(int64))
		mode := sm.waitAndPop().item.(int64)
		switch o := obj.(type) {
		case fdb.Database:
			v, e := db.GetRange(fdb.SelectorRange{begin, end}, fdb.RangeOptions{Limit: int(limit), Reverse: reverse, Mode: fdb.StreamingMode(mode + 1)})
			if e != nil {
				panic(e)
			}
			sm.pushRange(idx, v)
		case fdb.ReadTransaction:
			sm.pushRange(idx, o.GetRange(fdb.SelectorRange{begin, end}, fdb.RangeOptions{Limit: int(limit), Reverse: reverse, Mode: fdb.StreamingMode(mode + 1)}).GetSliceOrPanic())
		}
	case "CLEAR_RANGE_STARTS_WITH":
		prefix := sm.waitAndPop().item.([]byte)
		er, e := fdb.PrefixRange(prefix)
		if e != nil {
			panic(e)
		}
		switch o := obj.(type) {
		case fdb.Database:
			e := o.ClearRange(er)
			if e != nil {
				panic(e)
			}
			sm.store(idx, []byte("RESULT_NOT_PRESENT"))
		case fdb.Transaction:
			o.ClearRange(er)
		}
	case "TUPLE_PACK":
		var t tuple.Tuple
		count := sm.waitAndPop().item.(int64)
		for i := 0; i < int(count); i++ {
			t = append(t, sm.waitAndPop().item)
		}
		sm.store(idx, t.Pack())
	case "TUPLE_UNPACK":
		t, e := tuple.Unpack(sm.waitAndPop().item.([]byte))
		if e != nil {
			panic(e)
		}
		for _, el := range t {
			sm.store(idx, tuple.Tuple{el}.Pack())
		}
	case "TUPLE_RANGE":
		var t tuple.Tuple
		count := sm.waitAndPop().item.(int64)
		for i := 0; i < int(count); i++ {
			t = append(t, sm.waitAndPop().item)
		}
		kr := t.Range()
		sm.store(idx, kr.Begin)
		sm.store(idx, kr.End)
	case "START_THREAD":
		newsm := newStackMachine(sm.waitAndPop().item.([]byte), verbose)
		sm.threads.Add(1)
		go func() {
			newsm.Run()
			sm.threads.Done()
		}()
	case "WAIT_EMPTY":
		prefix := sm.waitAndPop().item.([]byte)
		er, e := fdb.PrefixRange(prefix)
		if e != nil {
			panic(e)
		}
		db.Transact(func(tr fdb.Transaction) (interface{}, error) {
			v := tr.GetRange(er, fdb.RangeOptions{}).GetSliceOrPanic()
			if len(v) != 0 {
				panic(fdb.Error(1020))
			}
			return nil, nil
		})
		sm.store(idx, []byte("WAITED_FOR_EMPTY"))
	case "READ_CONFLICT_RANGE":
		e = sm.tr.AddReadConflictRange(fdb.KeyRange{fdb.Key(sm.waitAndPop().item.([]byte)), fdb.Key(sm.waitAndPop().item.([]byte))})
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_RANGE"))
	case "WRITE_CONFLICT_RANGE":
		e = sm.tr.AddWriteConflictRange(fdb.KeyRange{fdb.Key(sm.waitAndPop().item.([]byte)), fdb.Key(sm.waitAndPop().item.([]byte))})
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_RANGE"))
	case "READ_CONFLICT_KEY":
		e = sm.tr.AddReadConflictKey(fdb.Key(sm.waitAndPop().item.([]byte)))
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_KEY"))
	case "WRITE_CONFLICT_KEY":
		e = sm.tr.AddWriteConflictKey(fdb.Key(sm.waitAndPop().item.([]byte)))
		if e != nil {
			panic(e)
		}
		sm.store(idx, []byte("SET_CONFLICT_KEY"))
	case "ATOMIC_OP":
		opname := strings.Title(strings.ToLower(string(sm.waitAndPop().item.([]byte))))
		key := fdb.Key(sm.waitAndPop().item.([]byte))
		value := sm.waitAndPop().item.([]byte)
		reflect.ValueOf(obj).MethodByName(opname).Call([]reflect.Value{reflect.ValueOf(key), reflect.ValueOf(value)})
		switch obj.(type) {
		case fdb.Database:
			sm.store(idx, []byte("RESULT_NOT_PRESENT"))
		}
	case "DISABLE_WRITE_CONFLICT":
		sm.tr.Options().SetNextWriteNoWriteConflictRange()
	case "CANCEL":
		sm.tr.Cancel()
	case "UNIT_TESTS":
	default:
		log.Fatalf("Unhandled operation %s\n", string(inst[0].([]byte)))
	}

	if sm.verbose {
		fmt.Printf("        to [")
		sm.dumpStack()
		fmt.Printf(" ]\n\n")
	}

	runtime.Gosched()
}