func drawArrows(arrows [8]bool) { for i := Direction(0); i < 8; i++ { // determine arrow position on card x := 0.5 * (1 + arrowCos(i)) * CardWidth y := 0.5 * (1 + arrowSin(i)) * CardHeight if arrows[i] { // draw the arrow gl.Color3f(1.0, 1.0, 0) glh.DrawQuadd(x-2, y-2, 4, 4) } } }
func (block *Block) Draw(start, N int64, detailed bool) { if block.tex == nil { block.RequestTexture() } switch detailed { case true: block.detail_needed = true if block.vertex_data == nil { // Hey, we need vertices but don't have them! Let's fix that.. block.RequestVertices() } default: block.detail_needed = false } width := uint64(len(block.display_active_pages)) * *PAGE_SIZE if width == 0 { width = 1 } vc := glh.NewMeshBuffer(glh.RenderArrays, glh.NewPositionAttr(2, gl.FLOAT, gl.STATIC_DRAW), glh.NewPositionAttr(4, gl.UNSIGNED_INT, gl.STATIC_DRAW), ) colors := make([]int32, 0) positions := make([]float32, 0) // var vc glh.ColorVertices if *pageboundaries { // boundary_color := color.RGBA{64, 64, 64, 255} // If we try and draw too many of these, X will hang if width / *PAGE_SIZE < 10000 { for p := uint64(0); p <= width; p += *PAGE_SIZE { x := float32(p) / float32(width) x = (x - 0.5) * 4 colors = append(colors, 64, 64, 64, 255) positions = append(positions, x, float32(N)) // vc.Add(glh.ColorVertex{boundary_color, glh.Vertex{x, 0}}) // vc.Add(glh.ColorVertex{boundary_color, glh.Vertex{x, float32(N)}}) } } } var border_color [4]float64 gl.LineWidth(1) glh.With(&Timer{Name: "DrawPartial"}, func() { var x1, y1, x2, y2 float64 glh.With(glh.Matrix{gl.MODELVIEW}, func() { // TODO: A little less co-ordinate insanity? gl.Translated(0, -2, 0) gl.Scaled(1, 4/float64(*nback), 1) gl.Translated(0, -float64(start), 0) x1, y1 = glh.ProjToWindow(-2, 0) x2, y2 = glh.ProjToWindow(-2+WIDTH, float64(N)) }) border_color = [4]float64{1, 1, 1, 1} glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Translated(0, -2, 0) gl.Scaled(1, 4/float64(*nback), 1) gl.Translated(0, -float64(start), 0) // Page boundaries // TODO: Use different blending scheme on textured quads so that the // lines show through glh.With(glh.Attrib{gl.ENABLE_BIT}, func() { gl.Disable(gl.LINE_SMOOTH) // vc.Draw(gl.LINES) vc.Render(gl.LINES) }) }) if block.tex != nil && (!detailed || block.vertex_data == nil) { border_color = [4]float64{0, 0, 1, 1} glh.With(glh.WindowCoords{Invert: true}, func() { gl.Color4f(1, 1, 1, 1) // Render textured block quad glh.With(block.tex, func() { glh.DrawQuadd(x1, y1, x2-x1, y2-y1) }) glh.With(glh.Primitive{gl.LINES}, func() { glh.Squared(x1, y1, x2-x1, y2-y1) }) }) if block.vertex_data != nil && !block.detail_needed { // TODO: figure out when we can unload // Hey, we can unload you, because you are not needed block.vertex_data = nil } } if detailed && block.vertex_data != nil { glh.With(glh.Matrix{gl.MODELVIEW}, func() { // TODO: A little less co-ordinate insanity? gl.Translated(0, -2, 0) gl.Scaled(1, 4/float64(*nback), 1) gl.Translated(0, -float64(start), 0) gl.PointSize(2) block.vertex_data.Render(gl.POINTS) }) } glh.With(glh.WindowCoords{Invert: true}, func() { // Block boundaries gl.Color4dv(&border_color) gl.LineWidth(1) glh.With(glh.Primitive{gl.LINE_LOOP}, func() { glh.Squared(x1, y1, x2-x1, y2-y1) }) }) }) }
func main() { var err error if err = glfw.Init(); err != nil { fmt.Fprintf(os.Stderr, "[e] %v\n", err) return } defer glfw.Terminate() w, h := 1980, 1080 // w, h := 1280, 768 if err = glfw.OpenWindow(w, h, 8, 8, 8, 16, 0, 32, glfw.Fullscreen); err != nil { fmt.Fprintf(os.Stderr, "[e] %v\n", err) return } defer glfw.CloseWindow() glfw.SetSwapInterval(1) glfw.SetWindowTitle("Debris") quadric = glu.NewQuadric() gl.Enable(gl.CULL_FACE) gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) gl.Enable(gl.NORMALIZE) gl.Enable(gl.BLEND) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA) gl.ShadeModel(gl.SMOOTH) gl.Enable(gl.LIGHTING) var ( ambient = []float32{0.1, 0.3, 0.6, 1} diffuse = []float32{1, 1, 0.5, 1} specular = []float32{0.4, 0.4, 0.4, 1} light_position = []float32{1, 0, 0, 0} // mat_specular []float32 = []float32{1, 1, 0.5, 1} mat_specular = []float32{1, 1, 0.75, 1} mat_shininess = float32(120) // light_position []float32 = []float32{0.0, 0.0, 1.0, 0.0} ) const ( fov = 1.1 // degrees znear = 145 zfar = 155 camera_z_offset = -150 camera_x_rotation = 0 // degrees // camera_x_rotation = 20 // degrees starfield_fov = 45 faces = 1000 earth_radius = 1 ) gl.Lightfv(gl.LIGHT1, gl.AMBIENT, ambient) gl.Lightfv(gl.LIGHT1, gl.DIFFUSE, diffuse) gl.Lightfv(gl.LIGHT1, gl.SPECULAR, specular) gl.Lightfv(gl.LIGHT1, gl.POSITION, light_position) gl.Enable(gl.LIGHT1) mat_emission := []float32{0, 0, 0.1, 1} gl.Materialfv(gl.FRONT_AND_BACK, gl.EMISSION, mat_emission) gl.Materialfv(gl.FRONT_AND_BACK, gl.SPECULAR, mat_specular) gl.Materialf(gl.FRONT_AND_BACK, gl.SHININESS, mat_shininess) gl.ClearColor(0.02, 0.02, 0.02, 1) gl.ClearDepth(1) gl.ClearStencil(0) gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) b := createBuffer() planetoids := []*Planetoid{} for i := 0; i < 1000; i++ { p := &Planetoid{ apogee: 1.2 + rand.Float64()*0.7, perigee: 1.5, // inclination: 45, inclination: rand.Float64()*20 - 10, // inclination: 0, phase0: rand.Float64() * 360, rising_node: rand.Float64() * 10, phase: 0, // radius: rand.Float32()*0.05 + 0.01, //float32(r), radius: rand.Float32()*0.0125 + 0.005, //float32(r), // quadric: glu.NewQuadric(), circle: b, } planetoids = append(planetoids, p) } // Initial projection matrix: var aspect float64 glfw.SetWindowSizeCallback(func(w, h int) { gl.Viewport(0, 0, w, h) gl.MatrixMode(gl.PROJECTION) gl.LoadIdentity() aspect = float64(w) / float64(h) glu.Perspective(fov, aspect, znear, zfar) }) d := float64(0) wireframe := false atmosphere := false polar := false rotating := false front := false earth := true cone := true shadowing := true tilt := false running := true glfw.SetKeyCallback(func(key, state int) { if state != glfw.KeyPress { // Don't act on key coming up return } switch key { case 'A': atmosphere = !atmosphere case 'C': cone = !cone case 'E': earth = !earth case 'R': rotating = !rotating case 'F': front = !front if front { gl.FrontFace(gl.CW) } else { gl.FrontFace(gl.CCW) } case 'S': shadowing = !shadowing case 'T': tilt = !tilt case 'W': wireframe = !wireframe method := gl.GLenum(gl.FILL) if wireframe { method = gl.LINE } gl.PolygonMode(gl.FRONT_AND_BACK, method) case glfw.KeyF2: println("Screenshot captured") // glh.CaptureToPng("screenshot.png") w, h := glh.GetViewportWH() im := image.NewRGBA(image.Rect(0, 0, w, h)) glh.ClearAlpha(1) gl.Flush() glh.CaptureRGBA(im) go func() { fd, err := os.Create("screenshot.png") if err != nil { panic("Unable to open file") } defer fd.Close() png.Encode(fd, im) }() case 'Q', glfw.KeyEsc: running = !running case glfw.KeySpace: polar = !polar } }) _ = rand.Float64 stars := glh.NewMeshBuffer( glh.RenderArrays, glh.NewPositionAttr(3, gl.DOUBLE, gl.STATIC_DRAW), glh.NewColorAttr(3, gl.DOUBLE, gl.STATIC_DRAW)) const Nstars = 50000 points := make([]float64, 3*Nstars) colors := make([]float64, 3*Nstars) for i := 0; i < Nstars; i++ { const R = 1 phi := rand.Float64() * 2 * math.Pi z := R * (2*rand.Float64() - 1) theta := math.Asin(z / R) points[i*3+0] = R * math.Cos(theta) * math.Cos(phi) points[i*3+1] = R * math.Cos(theta) * math.Sin(phi) points[i*3+2] = z const r = 0.8 v := rand.Float64()*r + (1 - r) colors[i*3+0] = v colors[i*3+1] = v colors[i*3+2] = v } stars.Add(points, colors) render_stars := func() { glh.With(glh.Attrib{gl.DEPTH_BUFFER_BIT | gl.ENABLE_BIT}, func() { gl.Disable(gl.LIGHTING) gl.PointSize(1) gl.Color4f(1, 1, 1, 1) gl.Disable(gl.DEPTH_TEST) gl.DepthMask(false) stars.Render(gl.POINTS) }) } render_scene := func() { // Update light position (sensitive to current modelview matrix) gl.Lightfv(gl.LIGHT1, gl.POSITION, light_position) gl.Lightfv(gl.LIGHT2, gl.POSITION, light_position) if earth { Sphere(earth_radius, faces) } unlit_points := glh.Compound(glh.Disable(gl.LIGHTING), glh.Primitive{gl.POINTS}) glh.With(unlit_points, func() { gl.Vertex3d(1, 0, 0) }) for _, p := range planetoids { const dt = 0.1 // TODO: Frame update p.Render(dt) } glh.With(glh.Disable(gl.LIGHTING), func() { // Atmosphere gl.Color4f(0.25, 0.25, 1, 0.1) if atmosphere && earth { Sphere(earth_radius*1.025, 100) } gl.PointSize(10) glh.With(glh.Primitive{gl.POINTS}, func() { gl.Color4f(1.75, 0.75, 0.75, 1) gl.Vertex3d(-1.04, 0, 0) }) }) } render_shadow_volume := func() { glh.With(glh.Attrib{ gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.ENABLE_BIT | gl.POLYGON_BIT | gl.STENCIL_BUFFER_BIT, }, func() { gl.Disable(gl.LIGHTING) if shadowing { // gl.Disable(gl.DEPTH_TEST) gl.DepthMask(false) gl.DepthFunc(gl.LEQUAL) gl.Enable(gl.STENCIL_TEST) gl.ColorMask(false, false, false, false) gl.StencilFunc(gl.ALWAYS, 1, 0xffffffff) } shadow_volume := func() { const sv_length = 2 const sv_granularity = 100 const sv_radius = earth_radius * 1.001 // Shadow cone glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Rotatef(90, 1, 0, 0) gl.Rotatef(90, 0, -1, 0) gl.Color4f(0.5, 0.5, 0.5, 1) glu.Cylinder(quadric, sv_radius, sv_radius*1.05, sv_length, sv_granularity, 1) glu.Disk(quadric, 0, sv_radius, sv_granularity, 1) glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Translated(0, 0, sv_length) glu.Disk(quadric, 0, sv_radius*1.05, sv_granularity, 1) }) }) for _, p := range planetoids { p.RenderShadowVolume() } } if cone { gl.FrontFace(gl.CCW) gl.StencilOp(gl.KEEP, gl.KEEP, gl.INCR) shadow_volume() gl.FrontFace(gl.CW) gl.StencilOp(gl.KEEP, gl.KEEP, gl.DECR) shadow_volume() } if shadowing { gl.StencilFunc(gl.NOTEQUAL, 0, 0xffffffff) gl.StencilOp(gl.KEEP, gl.KEEP, gl.KEEP) gl.ColorMask(true, true, true, true) // gl.Disable(gl.STENCIL_TEST) gl.Disable(gl.DEPTH_TEST) gl.FrontFace(gl.CCW) // gl.Color4f(1, 0, 0, 0.75) gl.Color4f(0, 0, 0, 0.75) // gl.Color4f(1, 1, 1, 0.75) gl.LoadIdentity() gl.Translated(0, 0, camera_z_offset) // TODO: Figure out why this doesn't draw over the whole screen glh.With(glh.Disable(gl.LIGHTING), func() { glh.DrawQuadd(-10, -10, 20, 20) }) // gl.FrontFace(gl.CW) // gl.Enable(gl.LIGHTING) // gl.Disable(gl.LIGHT1) // render_scene() // gl.Enable(gl.LIGHT1) } }) } _ = render_stars for running { running = glfw.WindowParam(glfw.Opened) == 1 glfw.SwapBuffers() gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.STENCIL_BUFFER_BIT) rotation := func() { if tilt { gl.Rotated(20, 1, 0, 0) } if polar { gl.Rotated(90, 1, 0, 0) } gl.Rotated(d, 0, -1, 0) } // Star field glh.With(glh.Matrix{gl.PROJECTION}, func() { gl.LoadIdentity() glu.Perspective(starfield_fov, aspect, 0, 1) glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.LoadIdentity() rotation() render_stars() }) }) gl.MatrixMode(gl.MODELVIEW) gl.LoadIdentity() gl.Translated(0, 0, camera_z_offset) rotation() if rotating { d += 0.2 } _ = render_scene render_scene() _ = render_shadow_volume render_shadow_volume() } }