func TestUpdate(t *testing.T) { neuralNetwork := CreateSimpleNetwork(t) inputs := mat64.NewDense(1, 2, []float64{0.05, 0.10}) neuralNetwork.Forward(inputs) values := mat64.NewDense(1, 2, []float64{0.01, 0.99}) neuralNetwork.Backward(values) learningConfiguration := neural.LearningConfiguration{ Epochs: proto.Int32(1), Rate: proto.Float64(0.5), Decay: proto.Float64(0), BatchSize: proto.Int32(1), } neuralNetwork.Update(learningConfiguration) expected_weights_0 := mat64.NewDense( 3, 2, []float64{0.149780716, 0.24975114, 0.19956143, 0.29950229, 0.35, 0.35}) if !mat64.EqualApprox( neuralNetwork.Layers[0].Weight, expected_weights_0, 0.0001) { t.Errorf("weights 0 unexpected:\n%v", mat64.Formatted(neuralNetwork.Layers[0].Weight)) } expected_weights_1 := mat64.NewDense( 3, 2, []float64{0.35891648, 0.51130127, 0.408666186, 0.561370121, 0.6, 0.6}) if !mat64.EqualApprox( neuralNetwork.Layers[1].Weight, expected_weights_1, 0.0001) { t.Errorf("weights 1 unexpected:\n%v", mat64.Formatted(neuralNetwork.Layers[1].Weight)) } }
func Train(neuralNetwork *Network, datapoints []Datapoint, learningConfiguration LearningConfiguration) { // Train on some number of iterations of permuted versions of the input. batchSize := int(*learningConfiguration.BatchSize) // Batch size 0 means do full batch learning. if batchSize == 0 { batchSize = len(datapoints) } error_function := NewErrorFunction(*learningConfiguration.ErrorName) features := mat64.NewDense(batchSize, len(datapoints[0].Features), nil) values := mat64.NewDense(batchSize, len(datapoints[0].Values), nil) for i := 0; i < int(*learningConfiguration.Epochs); i++ { perm := rand.Perm(len(datapoints)) // TODO(ariw): This misses the last len(perm) % batchSize examples. Is this // okay? for j := 0; j <= len(perm)-batchSize; j += batchSize { for k := 0; k < batchSize; k++ { features.SetRow(k, datapoints[perm[j+k]].Features) values.SetRow(k, datapoints[perm[j+k]].Values) } neuralNetwork.Forward(features) neuralNetwork.Backward(values, error_function) neuralNetwork.Update(learningConfiguration) } } }
// AfterConstr builds and returns matrices representing equality // constraints with a parameter multiplier matrix A and upper and lower // bounds. The constraint expresses that each facility can only be built after // a certain date. func (s *Scenario) AfterConstr() (A, target *mat64.Dense) { nperiods := s.nPeriods() // count facilities that have build time constraints n := 0 for _, fac := range s.Facs { if fac.BuildAfter != 0 { n++ } } A = mat64.NewDense(n*nperiods, s.Nvars(), nil) target = mat64.NewDense(n*nperiods, 1, nil) r := 0 for f, fac := range s.Facs { if fac.BuildAfter == 0 { continue } for t := s.BuildPeriod; t < s.SimDur; t += s.BuildPeriod { if !fac.Available(t) { c := f*nperiods + t/s.BuildPeriod - 1 A.Set(r, c, 1) } r++ } } return A, target }
// SupportConstr builds and returns matrices representing linear inequality // constraints with a parameter multiplier matrix A and upper and lower // bounds. The constraint expresses that the total number of support // facilities (i.e. not reactors) at every timestep must never be more // than twice the number of deployed reactors. func (s *Scenario) SupportConstr() (low, A, up *mat64.Dense) { nperiods := s.nPeriods() A = mat64.NewDense(nperiods, s.Nvars(), nil) low = mat64.NewDense(nperiods, 1, nil) tmp := make([]float64, len(s.MaxPower)) copy(tmp, s.MaxPower) up = mat64.NewDense(nperiods, 1, tmp) up.Apply(func(r, c int, v float64) float64 { return 1e200 }, up) for t := s.BuildPeriod; t < s.SimDur; t += s.BuildPeriod { for f, fac := range s.Facs { for n := 0; n < nperiods; n++ { if !fac.Alive(n*s.BuildPeriod+1, t) { continue } i := f*nperiods + n if fac.Cap == 0 { A.Set(t/s.BuildPeriod-1, i, -1) } else { A.Set(t/s.BuildPeriod-1, i, 2) } } } } return low, A, up }
/* * Test the Network for a basic XOR gate. */ func TestSGD(t *testing.T) { var a = []int{2, 3, 1} var eta float64 = 3 net := Network{} net.Init(a) net.TestFunc = func(output, desiredOutput *mat64.Dense) bool { if math.Abs(output.At(0, 0)-desiredOutput.At(0, 0)) < 0.1 { return true } return false } data := make([][]mat64.Dense, 10000) for i := 0; i < len(data); i++ { data[i] = make([]mat64.Dense, 2) rand.Seed(time.Now().UTC().UnixNano()) x := rand.Intn(2) y := rand.Intn(2) data[i][0] = *mat64.NewDense(1, 2, []float64{float64(x), float64(y)}) data[i][1] = *mat64.NewDense(1, 1, []float64{float64(x ^ y)}) } test := make([][]mat64.Dense, 4) for i := 0; i < 4; i++ { test[i] = make([]mat64.Dense, 2) test[i][0] = *mat64.NewDense(1, 2, []float64{float64(i / 2), float64(i % 2)}) test[i][1] = *mat64.NewDense(1, 1, []float64{float64((i / 2) ^ (i % 2))}) } net.SGD(data, eta, 3, test) }
func TestEuclidean(t *testing.T) { var vectorX, vectorY *mat64.Dense euclidean := NewEuclidean() Convey("Given two vectors", t, func() { vectorX = mat64.NewDense(3, 1, []float64{1, 2, 3}) vectorY = mat64.NewDense(3, 1, []float64{2, 4, 5}) Convey("When doing inner product", func() { result := euclidean.InnerProduct(vectorX, vectorY) Convey("The result should be 25", func() { So(result, ShouldEqual, 25) }) }) Convey("When calculating distance", func() { result := euclidean.Distance(vectorX, vectorY) Convey("The result should be 3", func() { So(result, ShouldEqual, 3) }) }) }) }
func main() { // task 1: show qr decomp of wp example a := mat64.NewDense(3, 3, []float64{ 12, -51, 4, 6, 167, -68, -4, 24, -41, }) var qr mat64.QR qr.Factorize(a) var q, r mat64.Dense q.QFromQR(&qr) r.RFromQR(&qr) fmt.Printf("q: %.3f\n\n", mat64.Formatted(&q, mat64.Prefix(" "))) fmt.Printf("r: %.3f\n\n", mat64.Formatted(&r, mat64.Prefix(" "))) // task 2: use qr decomp for polynomial regression example x := []float64{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} y := []float64{1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321} a = Vandermonde(x, 2) b := mat64.NewDense(11, 1, y) qr.Factorize(a) var f mat64.Dense f.SolveQR(&qr, false, b) fmt.Printf("polyfit: %.3f\n", mat64.Formatted(&f, mat64.Prefix(" "))) }
func TestChebyshev(t *testing.T) { var vectorX, vectorY *mat64.Dense chebyshev := NewChebyshev() Convey("Given two vectors", t, func() { vectorX = mat64.NewDense(4, 1, []float64{1, 2, 3, 4}) vectorY = mat64.NewDense(4, 1, []float64{-5, -6, 7, 8}) Convey("When calculating distance with two vectors", func() { result := chebyshev.Distance(vectorX, vectorY) Convey("The result should be 8", func() { So(result, ShouldEqual, 8) }) }) Convey("When calculating distance with row vectors", func() { vectorX.Copy(vectorX.T()) vectorY.Copy(vectorY.T()) result := chebyshev.Distance(vectorX, vectorY) Convey("The result should be 8", func() { So(result, ShouldEqual, 8) }) }) Convey("When calculating distance with different dimension matrices", func() { vectorX.Clone(vectorX.T()) So(func() { chebyshev.Distance(vectorX, vectorY) }, ShouldPanic) }) }) }
func (fm *FeatureMatrix) Mat64(header, transpose bool) *mat64.Dense { var ( idx int iter fmIt dense *mat64.Dense ) ncol := len(fm.Data) nrow := len(fm.CaseLabels) if !transpose { iter = rowIter(fm, header) dense = mat64.NewDense(nrow, ncol, nil) } else { iter = colIter(fm, header) dense = mat64.NewDense(ncol, nrow+1, nil) } for row, ok := iter(); ok; idx++ { for j, val := range row { flt, _ := strconv.ParseFloat(val, 64) dense.Set(idx, j, flt) } row, ok = iter() } return dense }
func NewTaskGraphStructure() *TaskGraphStructure { return &TaskGraphStructure{ make(map[int]*Task, 0), mat64.NewDense(0, 0, nil), mat64.NewDense(0, 0, nil), } }
// ReadLibsvm reads libsvm format data from `filepath`. `oneBased` denotes the // index of data stored in the file starts from 1 (`oneBased=true`) or 0 // (`oneBased=false`). Returned X, y is of dimension (nSamples, nFeatures) and // (nSamples, 1) respectively. func ReadLibsvm(filepath string, oneBased bool) (X, y *mat64.Dense) { type Data []string file, err := os.Open(filepath) if err != nil { fmt.Println("Got error when trying to open libsvm file") panic(err) } defer file.Close() nFeatures := 0 nSamples := 0 dataList := []Data{} scanner := bufio.NewScanner(file) for scanner.Scan() { row := strings.Split(scanner.Text(), " ") dataList = append(dataList, row) if idx, _ := parseLibsvmElem(row[len(row)-1]); idx+1 > nFeatures { nFeatures = idx + 1 } if oneBased { nFeatures = nFeatures - 1 } nSamples++ } X = mat64.NewDense(nSamples, nFeatures, nil) y = mat64.NewDense(nSamples, 1, nil) for i, data := range dataList { label, err := strconv.Atoi(data[0]) if err != nil { fmt.Println("Got error when trying to set label for %v-th sample", i) panic(err) } y.Set(i, 0, float64(label)) for k := 1; k < len(data); k++ { idx, val := parseLibsvmElem(data[k]) if oneBased { X.Set(i, idx-1, float64(val)) } else { X.Set(i, idx, float64(val)) } } } if err := scanner.Err(); err != nil { fmt.Println("Got error when trying to read libsvm file") panic(err) } return }
func TestPolyKernel(t *testing.T) { var vectorX, vectorY *mat64.Dense polyKernel := NewPolyKernel(3) Convey("Given two vectors", t, func() { vectorX = mat64.NewDense(3, 1, []float64{1, 2, 3}) vectorY = mat64.NewDense(3, 1, []float64{2, 4, 5}) Convey("When doing inner product", func() { result := polyKernel.InnerProduct(vectorX, vectorY) Convey("The result should be 17576", func() { So(result, ShouldEqual, 17576) }) }) Convey("When calculating distance", func() { result := polyKernel.Distance(vectorX, vectorY) Convey("The result should alomost equal 31.622776601683793", func() { So(result, ShouldAlmostEqual, 31.622776601683793) }) }) }) }
// InstancesTrainTestSplit takes a given Instances (src) and a train-test fraction // (prop) and returns an array of two new Instances, one containing approximately // that fraction and the other containing what's left. // // IMPORTANT: this function is only meaningful when prop is between 0.0 and 1.0. // Using any other values may result in odd behaviour. func InstancesTrainTestSplit(src *Instances, prop float64) (*Instances, *Instances) { trainingRows := make([]int, 0) testingRows := make([]int, 0) numAttrs := len(src.attributes) src.Shuffle() for i := 0; i < src.Rows; i++ { trainOrTest := rand.Intn(101) if trainOrTest > int(100*prop) { trainingRows = append(trainingRows, i) } else { testingRows = append(testingRows, i) } } rawTrainMatrix := mat64.NewDense(len(trainingRows), numAttrs, make([]float64, len(trainingRows)*numAttrs)) rawTestMatrix := mat64.NewDense(len(testingRows), numAttrs, make([]float64, len(testingRows)*numAttrs)) for i, row := range trainingRows { rowDat := src.storage.RowView(row) rawTrainMatrix.SetRow(i, rowDat) } for i, row := range testingRows { rowDat := src.storage.RowView(row) rawTestMatrix.SetRow(i, rowDat) } trainingRet := NewInstancesFromDense(src.attributes, len(trainingRows), rawTrainMatrix) testRet := NewInstancesFromDense(src.attributes, len(testingRows), rawTestMatrix) return trainingRet, testRet }
// Project a point on the torus onto the screen. func (ts TorusScreen) Project(v *mat64.Vector) (uint, uint) { xUnit, yUnit := ts.pixelSize() reflectComps := []float64{ 1, 0, 0, -1, } reflect := mat64.NewDense(2, 2, reflectComps) trans := Vec2(float64(ts.t.W)/2.0, float64(ts.t.H)/2.0) // Scaling matrix scaleComps := []float64{ xUnit, 0, 0, yUnit, } scale := mat64.NewDense(2, 2, scaleComps) pr := Vec2(0, 0) pr.MulVec(reflect, v) pr.AddVec(pr, trans) pr.MulVec(scale, pr) rx := uint(math.Floor(pr.At(0, 0))) ry := uint(math.Floor(pr.At(1, 0))) return rx, ry }
// LinearLeastSquares computes the least squares fit for the function // // f(x) = ╬њРѓђtermsÐ Ñ“Ñ’(x) + ╬њРѓЂtermsРѓЂ(x) + ... // // to the data (xs[i], ys[i]). It returns the parameters ╬њРѓђ, ╬њРѓЂ, ... // that minimize the sum of the squares of the residuals of f: // // РѕЉ (ys[i] - f(xs[i]))┬▓ // // If weights is non-nil, it is used to weight these residuals: // // РѕЉ weights[i] ├Ќ (ys[i] - f(xs[i]))┬▓ // // The function f is specified by one Go function for each linear // term. For efficiency, the Go function is vectorized: it will be // passed a slice of x values in xs and must fill the slice termOut // with the value of the term for each value in xs. func LinearLeastSquares(xs, ys, weights []float64, terms ...func(xs, termOut []float64)) (params []float64) { // The optimal parameters are found by solving for ╬њ╠ѓ in the // "normal equations": // // (ÂЮљЌрхђÂЮљќÂЮљЌ)╬њ╠ѓ = ÂЮљЌрхђÂЮљќÂЮљ▓ // // where ÂЮљќ is a diagonal weight matrix (or the identity matrix // for the unweighted case). // TODO: Consider using orthogonal decomposition. if len(xs) != len(ys) { panic("len(xs) != len(ys)") } if weights != nil && len(xs) != len(weights) { panic("len(xs) != len(weights") } // Construct ÂЮљЌрхђ. This is the more convenient representation // for efficiently calling the term functions. xTVals := make([]float64, len(terms)*len(xs)) for i, term := range terms { term(xs, xTVals[i*len(xs):i*len(xs)+len(xs)]) } XT := mat64.NewDense(len(terms), len(xs), xTVals) X := XT.T() // Construct ÂЮљЌрхђÂЮљќ. var XTW *mat64.Dense if weights == nil { // ÂЮљќ is the identity matrix. XTW = XT } else { // Since ÂЮљќ is a diagonal matrix, we do this directly. XTW = mat64.DenseCopyOf(XT) WDiag := mat64.NewVector(len(weights), weights) for row := 0; row < len(terms); row++ { rowView := XTW.RowView(row) rowView.MulElemVec(rowView, WDiag) } } // Construct ÂЮљ▓. y := mat64.NewVector(len(ys), ys) // Compute ╬њ╠ѓ. lhs := mat64.NewDense(len(terms), len(terms), nil) lhs.Mul(XTW, X) rhs := mat64.NewVector(len(terms), nil) rhs.MulVec(XTW, y) BVals := make([]float64, len(terms)) B := mat64.NewVector(len(terms), BVals) B.SolveVec(lhs, rhs) return BVals }
func (b batchPredictor) NewPredictor() predHelp.Predictor { return predictor{ featureWeights: b.featureWeights, inputMat: mat64.NewDense(1, b.nFeatures, nil), outputMat: mat64.NewDense(1, b.outputDim, nil), featurizedInput: make([]float64, b.nFeatures), order: b.order, } }
// f(x) = 2x + 2y // Parameters should be really, really close to 2. func TestSGD(t *testing.T) { x := mat64.NewDense(2, 2, []float64{1, 3, 5, 8}) y := mat64.NewDense(2, 1, []float64{8, 26}) theta := mat64.NewDense(2, 1, []float64{0, 0}) results := StochasticGradientDescent(x, y, theta, 0.005, 10000, 30) if results.At(0, 0) <= 1.99 || results.At(0, 0) >= 2.01 { t.Error("Innaccurate convergence of batch gradient descent") } }
func TestLayeredXORInline(t *testing.T) { Convey("Given an inline XOR dataset...", t, func() { data := mat64.NewDense(4, 3, []float64{ 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, }) XORData := base.InstancesFromMat64(4, 3, data) classAttr := base.GetAttributeByName(XORData, "2") XORData.AddClassAttribute(classAttr) net := NewMultiLayerNet([]int{3}) net.MaxIterations = 20000 net.Fit(XORData) Convey("After running for 20000 iterations, should have some predictive power...", func() { Convey("The right nodes should be connected in the network...", func() { So(net.network.GetWeight(1, 1), ShouldAlmostEqual, 1.000) So(net.network.GetWeight(2, 2), ShouldAlmostEqual, 1.000) for i := 1; i <= 6; i++ { So(net.network.GetWeight(6, i), ShouldAlmostEqual, 0.000) } }) out := mat64.NewDense(6, 1, []float64{1.0, 0.0, 0.0, 0.0, 0.0, 0.0}) net.network.Activate(out, 2) So(out.At(5, 0), ShouldAlmostEqual, 1.0, 0.1) Convey("And Predict() should do OK too...", func() { pred := net.Predict(XORData) for _, a := range pred.AllAttributes() { af, ok := a.(*base.FloatAttribute) So(ok, ShouldBeTrue) af.Precision = 1 } So(base.GetClass(pred, 0), ShouldEqual, "1.0") So(base.GetClass(pred, 1), ShouldEqual, "1.0") So(base.GetClass(pred, 2), ShouldEqual, "0.0") So(base.GetClass(pred, 3), ShouldEqual, "0.0") }) }) }) }
// Sample generates rows(batch) samples using the Metropolis Hastings sample // generation method. The initial location is NOT updated during the call to Sample. // // The number of columns in batch must equal len(m.Initial), otherwise Sample // will panic. func (m MetropolisHastingser) Sample(batch *mat64.Dense) { burnIn := m.BurnIn rate := m.Rate if rate == 0 { rate = 1 } r, c := batch.Dims() if len(m.Initial) != c { panic("metropolishastings: length mismatch") } // Use the optimal size for the temporary memory to allow the fewest calls // to MetropolisHastings. The case where tmp shadows samples must be // aligned with the logic after burn-in so that tmp does not shadow samples // during the rate portion. tmp := batch if rate > r { tmp = mat64.NewDense(rate, c, nil) } rTmp, _ := tmp.Dims() // Perform burn-in. remaining := burnIn initial := make([]float64, c) copy(initial, m.Initial) for remaining != 0 { newSamp := min(rTmp, remaining) MetropolisHastings(tmp.View(0, 0, newSamp, c).(*mat64.Dense), initial, m.Target, m.Proposal, m.Src) copy(initial, tmp.RawRowView(newSamp-1)) remaining -= newSamp } if rate == 1 { MetropolisHastings(batch, initial, m.Target, m.Proposal, m.Src) return } if rTmp <= r { tmp = mat64.NewDense(rate, c, nil) } // Take a single sample from the chain. MetropolisHastings(batch.View(0, 0, 1, c).(*mat64.Dense), initial, m.Target, m.Proposal, m.Src) copy(initial, batch.RawRowView(0)) // For all of the other samples, first generate Rate samples and then actually // accept the last one. for i := 1; i < r; i++ { MetropolisHastings(tmp, initial, m.Target, m.Proposal, m.Src) v := tmp.RawRowView(rate - 1) batch.SetRow(i, v) copy(initial, v) } }
func (em EM) norm(x []float64, j int) float64 { xMat := mat64.NewDense(1, len(x), x) muMat := mat64.NewDense(1, len(em.mu[j]), em.mu[j]) first := mat64.NewDense(1, len(em.mu[j]), nil) first.Sub(xMat, muMat) second := mat64.DenseCopyOf(first.T()) resultMat := mat64.NewDense(1, 1, nil) resultMat.Mul(first, second) var jisuu = 0.5 * float64(em.d) return math.Exp(resultMat.At(0, 0)/(-2.0)/(em.sigma[j]*em.sigma[j])) / math.Pow(2*math.Pi*em.sigma[j]*em.sigma[j], jisuu) }
func generateRandomSamples(n, nDim int) (x, y *mat64.Dense) { x = mat64.NewDense(n, nDim, nil) y = mat64.NewDense(n, nDim, nil) for i := 0; i < n; i++ { for j := 0; j < nDim; j++ { x.Set(i, j, rand.NormFloat64()) y.Set(i, j, testfunc(x.At(i, j))) } } return }
func main() { runtime.GOMAXPROCS(runtime.NumCPU() - 2) gopath := os.Getenv("GOPATH") path := filepath.Join(gopath, "prof", "github.com", "reggo", "reggo", "nnet") nInputs := 10 nOutputs := 3 nLayers := 2 nNeurons := 50 nSamples := 1000000 nRuns := 50 config := &profile.Config{ CPUProfile: true, ProfilePath: path, } defer profile.Start(config).Stop() net, err := nnet.NewSimpleTrainer(nInputs, nOutputs, nLayers, nNeurons, nnet.Linear{}) if err != nil { log.Fatal(err) } // Generate some random data inputs := mat64.NewDense(nSamples, nInputs, nil) outputs := mat64.NewDense(nSamples, nOutputs, nil) for i := 0; i < nSamples; i++ { for j := 0; j < nInputs; j++ { inputs.Set(i, j, rand.Float64()) } for j := 0; j < nOutputs; j++ { outputs.Set(i, j, rand.Float64()) } } // Create trainer prob := train.NewBatchGradBased(net, true, inputs, outputs, nil, nil, nil) nParameters := net.NumParameters() parameters := make([]float64, nParameters) derivative := make([]float64, nParameters) for i := 0; i < nRuns; i++ { net.RandomizeParameters() net.Parameters(parameters) prob.ObjGrad(parameters, derivative) fmt.Println(floats.Sum(derivative)) } }
func init() { flatValues = make([]float64, 80) flatLabels = make([]float64, 20) for i := 0; i < 80; i++ { flatValues[i] = float64(i + 1) // Replaces labels four times per run but who cares. flatLabels[int(i/4)] = float64(rand.Intn(2)) } values = mat.NewDense(20, 4, flatValues) labels = mat.NewDense(20, 1, flatLabels) }
// Format the examples. func Format(examples [][][]float64) (*mat64.Dense, *mat64.Dense) { var input, output []float64 rows := len(examples) inCols := len(examples[0][0]) outCols := len(examples[0][1]) for _, example := range examples { output = append(output, example[1]...) input = append(input, example[0]...) } return mat64.NewDense(rows, inCols, input), mat64.NewDense(rows, outCols, output) }
// Stochastic gradient descent updates the parameters of theta on a random row selection from a matrix. // It is faster as it does not compute the cost function over the entire dataset every time. // It instead calculates the error parameters over only one row of the dataset at a time. // In return, there is a trade off for accuracy. This is minimised by running multiple SGD processes // (the number of goroutines spawned is specified by the procs variable) in parallel and taking an average of the result. func StochasticGradientDescent(x, y, theta *mat64.Dense, alpha float64, epoch, procs int) *mat64.Dense { m, _ := y.Dims() resultPipe := make(chan *mat64.Dense) results := make([]*mat64.Dense, 0) for p := 0; p < procs; p++ { go func() { // Is this just a pointer to theta? thetaCopy := mat64.DenseCopyOf(theta) for i := 0; i < epoch; i++ { for k := 0; k < m; k++ { datXtemp := x.RowView(k) datYtemp := y.RowView(k) datX := mat64.NewDense(1, len(datXtemp), datXtemp) datY := mat64.NewDense(1, 1, datYtemp) datXFlat := mat64.DenseCopyOf(datX) datXFlat.TCopy(datXFlat) datX.Mul(datX, thetaCopy) datX.Sub(datX, datY) datXFlat.Mul(datXFlat, datX) // Horrible hack to get around the fact there is no elementwise division in mat64 xFlatRow, _ := datXFlat.Dims() gradient := make([]float64, 0) for i := 0; i < xFlatRow; i++ { row := datXFlat.RowView(i) for i := range row { divd := row[i] / float64(m) * alpha gradient = append(gradient, divd) } } grows := len(gradient) grad := mat64.NewDense(grows, 1, gradient) thetaCopy.Sub(thetaCopy, grad) } } resultPipe <- thetaCopy }() } for { select { case d := <-resultPipe: results = append(results, d) if len(results) == procs { return averageTheta(results) } } } }
func TestLinearRegression(t *testing.T) { t.Skip("Skipping for now") for _, test := range []struct { x *mat64.Dense y *mat64.Vector result *mat64.Vector test *mat64.Vector testResult float64 }{ { mat64.NewDense(3, 4, []float64{ 1, 3, 5, 6, 1, 1, 2, 3, 1, 9, 4, 2}), mat64.NewVector(3, []float64{1, 6, 4}), mat64.NewVector(4, []float64{8.0918, 0.8920, -3.7990, 1.5379}), mat64.NewVector(4, []float64{1, 1, 2, 3}), 6.0, }, { mat64.NewDense(10, 4, []float64{ 1, 2, 3, 4, 1, 3, 4, 5, 1, 4, 5, 6, 1, 5, 6, 7, 1, 6, 7, 8, 1, 7, 8, 9, 1, 8, 9, 10, 1, 9, 10, 11, 1, 10, 11, 12, 1, 11, 12, 13}), mat64.NewVector(10, []float64{20, 26, 32, 38, 44, 50, 56, 62, 68, 74}), mat64.NewVector(4, []float64{0, 1, 2, 3}), mat64.NewVector(4, []float64{1, 10, 11, 12}), 68.0, }, } { lr := NewLinearRegression(test.x, test.y) lr.Fit() if !mat64.EqualApprox(test.result, lr.Theta, 0.0001) { t.Errorf("LinearRegressions's return theta is expected to be equal to %v, found %v", test.result, lr.Theta) } predicted := lr.Predict(test.test) if math.Abs(test.testResult-predicted) > 0.0001 { t.Errorf("LinearRegression predict values are expected to be equal to %f, found %f", test.testResult, predicted) } } }
// Nearest returns the nearest grid point to p by rounding each dimensional // position to the nearest grid point. If the mesh basis is not the identity // matrix, then p is transformed to the mesh basis before rounding and then // retransformed back. func (m *InfMesh) Nearest(p []float64) []float64 { if m.StepSize == 0 { return append([]float64{}, p...) } else if l := len(m.Center); l != 0 && l != len(p) { panic(fmt.Sprintf("origin len %v incompatible with point len %v", l, len(p))) } // set up origin and inverter matrix if necessary if len(m.Center) == 0 { m.Center = make([]float64, len(p)) } if m.Basis != nil && m.inverter == nil { var err error m.inverter, err = mat64.Inverse(m.Basis) if err != nil { panic("basis inversion failed: " + err.Error()) } } // translate p based on origin and transform to new vector space newp := make([]float64, len(p)) for i := range newp { newp[i] = p[i] - m.Center[i] } v := mat64.NewDense(len(m.Center), 1, newp) rotv := v if m.inverter != nil { rotv.Mul(m.inverter, v) } // calculate nearest point nearest := mat64.NewDense(len(p), 1, nil) for i := range m.Center { n, rem := math.Modf(rotv.At(i, 0) / m.StepSize) if rem/m.StepSize > 0.5 { n++ } nearest.Set(i, 0, float64(n)*m.StepSize) } // transform back to standard space if m.Basis != nil { nearest.Mul(m.Basis, nearest) } nv := nearest.Col(nil, 0) for i := range nv { nv[i] += m.Center[i] } return nv }
func mulMulti(a *mat64.Dense, b []float64, rows int) (r []float64) { var m, m2 mat64.Dense b1 := mat64.NewDense(1, 1, []float64{b[0]}) b2 := mat64.NewDense(1, 1, []float64{b[1]}) m.Mul(a.ColView(0), b1) m2.Mul(a.ColView(1), b2) for i := 0; i < rows; i++ { r = append(r, m.ColView(0).At(i, 0)+m2.ColView(0).At(i, 0)) } return r }
func main() { showLU(mat64.NewDense(3, 3, []float64{ 1, 3, 5, 2, 4, 7, 1, 1, 0, })) fmt.Println() showLU(mat64.NewDense(4, 4, []float64{ 11, 9, 24, 2, 1, 5, 2, 6, 3, 17, 18, 1, 2, 5, 7, 1, })) }
// LinearSolve trains a Linear algorithm. // Assumes inputs and outputs are already scaled // If features is nil will call featurize // Will return nil if regularizer is not a linear regularizer // Is destructive if any of the weights are zero // Losser is always the two-norm // Does not set the value of the parameters (in case this is called in parallel with a different routine) func LinearSolve(linearTrainable LinearTrainable, features *mat64.Dense, inputs, trueOutputs common.RowMatrix, weights []float64, regularizer regularize.Regularizer) (parameters []float64) { // TODO: Allow tikhonov regularization // TODO: Add test for weights // TODO: Need to do something about returning a []float64 if !IsLinearSolveRegularizer(regularizer) { return nil } if features == nil { features = FeaturizeTrainable(linearTrainable, inputs, features) } _, nFeatures := features.Dims() var weightedFeatures, weightedOutput *mat64.Dense if weights != nil { scaledWeight := make([]float64, len(weights)) for i, weight := range weights { scaledWeight[i] = math.Sqrt(weight) } diagWeight := diagonal.NewDiagonal(nFeatures, weights) nSamples, outputDim := trueOutputs.Dims() weightedOutput = mat64.NewDense(nSamples, outputDim, nil) weightedFeatures = mat64.NewDense(nSamples, nFeatures, nil) weightedOutput.Mul(diagWeight, trueOutputs) weightedFeatures.Mul(diagWeight, features) } switch regularizer.(type) { case nil: case regularize.None: default: panic("Shouldn't be here. Must be error in IsLinearRegularizer") } if weights == nil { parameterMat := mat64.Solve(features, trueOutputs) return parameterMat.RawMatrix().Data } parameterMat := mat64.Solve(weightedFeatures, weightedOutput) return parameterMat.RawMatrix().Data }