Example #1
0
// asyncPlanWait is used to apply and respond to a plan async
func (s *Server) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture,
	result *structs.PlanResult, pending *pendingPlan) {
	defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
	defer close(waitCh)

	// Wait for the plan to apply
	if err := future.Error(); err != nil {
		s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err)
		pending.respond(nil, err)
		return
	}

	// Respond to the plan
	result.AllocIndex = future.Index()
	pending.respond(result, nil)
}
Example #2
0
// SubmitPlan is used to handle plan submission
func (h *Harness) SubmitPlan(plan *structs.Plan) (*structs.PlanResult, State, error) {
	// Ensure sequential plan application
	h.planLock.Lock()
	defer h.planLock.Unlock()

	// Store the plan
	h.Plans = append(h.Plans, plan)

	// Check for custom planner
	if h.Planner != nil {
		return h.Planner.SubmitPlan(plan)
	}

	// Get the index
	index := h.NextIndex()

	// Prepare the result
	result := new(structs.PlanResult)
	result.NodeUpdate = plan.NodeUpdate
	result.NodeAllocation = plan.NodeAllocation
	result.AllocIndex = index

	// Flatten evicts and allocs
	var allocs []*structs.Allocation
	for _, updateList := range plan.NodeUpdate {
		allocs = append(allocs, updateList...)
	}
	for _, allocList := range plan.NodeAllocation {
		allocs = append(allocs, allocList...)
	}
	allocs = append(allocs, plan.FailedAllocs...)

	// Attach the plan to all the allocations. It is pulled out in the
	// payload to avoid the redundancy of encoding, but should be denormalized
	// prior to being inserted into MemDB.
	if j := plan.Job; j != nil {
		for _, alloc := range allocs {
			if alloc.Job == nil {
				alloc.Job = j
			}
		}
	}

	// Apply the full plan
	err := h.State.UpsertAllocs(index, allocs)
	return result, nil, err
}
Example #3
0
// asyncPlanWait is used to apply and respond to a plan async
func (s *Server) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture,
	result *structs.PlanResult, pending *pendingPlan) {
	defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
	defer close(waitCh)

	// Wait for the plan to apply
	if err := future.Error(); err != nil {
		s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err)
		pending.respond(nil, err)
		return
	}

	// Respond to the plan
	result.AllocIndex = future.Index()

	// If this is a partial plan application, we need to ensure the scheduler
	// at least has visibility into any placements it made to avoid double placement.
	// The RefreshIndex computed by evaluatePlan may be stale due to evaluation
	// against an optimistic copy of the state.
	if result.RefreshIndex != 0 {
		result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex)
	}
	pending.respond(result, nil)
}
Example #4
0
// SubmitPlan is used to handle plan submission
func (h *Harness) SubmitPlan(plan *structs.Plan) (*structs.PlanResult, State, error) {
	// Ensure sequential plan application
	h.planLock.Lock()
	defer h.planLock.Unlock()

	// Store the plan
	h.Plans = append(h.Plans, plan)

	// Check for custom planner
	if h.Planner != nil {
		return h.Planner.SubmitPlan(plan)
	}

	// Get the index
	index := h.NextIndex()

	// Prepare the result
	result := new(structs.PlanResult)
	result.NodeUpdate = plan.NodeUpdate
	result.NodeAllocation = plan.NodeAllocation
	result.AllocIndex = index

	// Flatten evicts and allocs
	var allocs []*structs.Allocation
	for _, updateList := range plan.NodeUpdate {
		allocs = append(allocs, updateList...)
	}
	for _, allocList := range plan.NodeAllocation {
		allocs = append(allocs, allocList...)
	}
	allocs = append(allocs, plan.FailedAllocs...)

	// Apply the full plan
	err := h.State.UpsertAllocs(index, allocs)
	return result, nil, err
}