func raftFutureErrorCheck(future raft.ApplyFuture) {
	if err := future.Error(); err != nil {
		fmt.Printf("Apply Error 1: %v\n", err)
	}

	if !future.Response().(bool) {
		fmt.Printf("Apply Error 2:\n")
	}
}
Example #2
0
// asyncPlanWait is used to apply and respond to a plan async
func (s *Server) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture,
	result *structs.PlanResult, pending *pendingPlan) {
	defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
	defer close(waitCh)

	// Wait for the plan to apply
	if err := future.Error(); err != nil {
		s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err)
		pending.respond(nil, err)
		return
	}

	// Respond to the plan
	result.AllocIndex = future.Index()
	pending.respond(result, nil)
}
Example #3
0
// asyncPlanWait is used to apply and respond to a plan async
func (s *Server) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture,
	result *structs.PlanResult, pending *pendingPlan) {
	defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
	defer close(waitCh)

	// Wait for the plan to apply
	if err := future.Error(); err != nil {
		s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err)
		pending.respond(nil, err)
		return
	}

	// Respond to the plan
	result.AllocIndex = future.Index()

	// If this is a partial plan application, we need to ensure the scheduler
	// at least has visibility into any placements it made to avoid double placement.
	// The RefreshIndex computed by evaluatePlan may be stale due to evaluation
	// against an optimistic copy of the state.
	if result.RefreshIndex != 0 {
		result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex)
	}
	pending.respond(result, nil)
}
Example #4
0
// planWaitFuture is used to wait for the Raft future to complete
func planWaitFuture(future raft.ApplyFuture) (uint64, error) {
	if err := future.Error(); err != nil {
		return 0, err
	}
	return future.Index(), nil
}