func _TestBKpivot1(t *testing.T) { Ldata := [][]float64{ []float64{1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, []float64{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0}, []float64{1.0, 2.0, 3.0, 0.0, 0.0, 0.0, 0.0}, []float64{1.0, 2.0, 3.0, 4.0, 0.0, 0.0, 0.0}, []float64{1.0, 5.0, 3.0, 4.0, 5.0, 0.0, 0.0}, []float64{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.0}, []float64{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}} Bdata := [][]float64{ []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}} A := matrix.FloatMatrixFromTable(Ldata, matrix.RowOrder) X := matrix.FloatMatrixFromTable(Bdata, matrix.RowOrder) N := A.Rows() B := matrix.FloatZeros(N, 2) MultSym(B, A, X, 1.0, 0.0, LOWER|LEFT) t.Logf("initial B:\n%v\n", B) //N := 8 //A := matrix.FloatUniformSymmetric(N) nb := 0 W := matrix.FloatWithValue(A.Rows(), 5, 0.0) ipiv := make([]int, N, N) L, _ := DecomposeBK(A.Copy(), W, ipiv, LOWER, nb) t.Logf("ipiv: %v\n", ipiv) t.Logf("L:\n%v\n", L) ipiv0 := make([]int, N, N) nb = 4 L0, _ := DecomposeBK(A.Copy(), W, ipiv0, LOWER, nb) t.Logf("ipiv: %v\n", ipiv0) t.Logf("L:\n%v\n", L0) B0 := B.Copy() SolveBK(B0, L0, ipiv0, LOWER) t.Logf("B0:\n%v\n", B0) ipiv2 := make([]int32, N, N) lapack.SytrfFloat(A, ipiv2, linalg.OptLower) t.Logf("ipiv2: %v\n", ipiv2) t.Logf("lapack A:\n%v\n", A) lapack.Sytrs(A, B, ipiv2, linalg.OptLower) t.Logf("lapack B:\n%v\n", B) t.Logf("B == B0: %v\n", B.AllClose(B0)) }
func _TestBK2(t *testing.T) { Bdata := [][]float64{ []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}, []float64{10.0, 20.0}} N := 7 A0 := matrix.FloatNormal(N, N) A := matrix.FloatZeros(N, N) // A is symmetric, posivite definite Mult(A, A0, A0, 1.0, 1.0, TRANSB) X := matrix.FloatMatrixFromTable(Bdata, matrix.RowOrder) B := matrix.FloatZeros(N, 2) MultSym(B, A, X, 1.0, 0.0, LOWER|LEFT) t.Logf("initial B:\n%v\n", B) nb := 0 W := matrix.FloatWithValue(A.Rows(), 5, 1.0) A.SetAt(4, 1, A.GetAt(4, 1)+1.0) A.SetAt(1, 4, A.GetAt(4, 1)) ipiv := make([]int, N, N) L, _ := DecomposeBK(A.Copy(), W, ipiv, LOWER, nb) t.Logf("ipiv: %v\n", ipiv) t.Logf("L:\n%v\n", L) ipiv0 := make([]int, N, N) nb = 4 L0, _ := DecomposeBK(A.Copy(), W, ipiv0, LOWER, nb) t.Logf("ipiv: %v\n", ipiv0) t.Logf("L:\n%v\n", L0) B0 := B.Copy() SolveBK(B0, L0, ipiv0, LOWER) t.Logf("B0:\n%v\n", B0) ipiv2 := make([]int32, N, N) lapack.Sytrf(A, ipiv2, linalg.OptLower) t.Logf("ipiv2: %v\n", ipiv2) t.Logf("lapack A:\n%v\n", A) lapack.Sytrs(A, B, ipiv2, linalg.OptLower) t.Logf("lapack B:\n%v\n", B) t.Logf("B == B0: %v\n", B.AllClose(B0)) }
func _TestBKSolve(t *testing.T) { Ldata := [][]float64{ []float64{1.0, 2.0, 3.0, 4.0}, []float64{2.0, 2.0, 3.0, 4.0}, []float64{3.0, 3.0, 3.0, 4.0}, []float64{4.0, 4.0, 4.0, 4.0}} Xdata := [][]float64{ []float64{1.0, 2.0}, []float64{1.0, 2.0}, []float64{1.0, 2.0}, []float64{1.0, 2.0}} A := matrix.FloatMatrixFromTable(Ldata, matrix.RowOrder) X := matrix.FloatMatrixFromTable(Xdata, matrix.RowOrder) N := A.Rows() B := matrix.FloatZeros(N, 2) Mult(B, A, X, 1.0, 0.0, NOTRANS) S := matrix.FloatZeros(N, 2) MultSym(S, A, X, 1.0, 0.0, LOWER|LEFT) t.Logf("B:\n%v\n", B) t.Logf("S:\n%v\n", S) //N := 8 //A := matrix.FloatUniformSymmetric(N) nb := 0 W := matrix.FloatWithValue(A.Rows(), 5, 0.0) ipiv := make([]int, N, N) L, _ := DecomposeBK(A.Copy(), W, ipiv, LOWER, nb) t.Logf("ipiv: %v\n", ipiv) t.Logf("L:\n%v\n", L) B0 := B.Copy() SolveBK(B0, L, ipiv, LOWER) t.Logf("B0:\n%v\n", B0) ipiv2 := make([]int32, N, N) lapack.Sytrf(A, ipiv2, linalg.OptLower) t.Logf("ipiv2: %v\n", ipiv2) t.Logf("lapack A:\n%v\n", A) lapack.Sytrs(A, B, ipiv2, linalg.OptLower) t.Logf("lapack B:\n%v\n", B) }
// Solution of KKT equations by a dense LDL factorization of the // 3 x 3 system. // // Returns a function that (1) computes the LDL factorization of // // [ H A' GG'*W^{-1} ] // [ A 0 0 ], // [ W^{-T}*GG 0 -I ] // // given H, Df, W, where GG = [Df; G], and (2) returns a function for // solving // // [ H A' GG' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ GG 0 -W'*W ] [ uz ] [ bz ] // // H is n x n, A is p x n, Df is mnl x n, G is N x n where // N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ). // func kktLdl(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() ldK := n + p + mnl + dims.At("l")[0] + dims.Sum("q") + dims.SumPacked("s") K := matrix.FloatZeros(ldK, ldK) ipiv := make([]int32, ldK) u := matrix.FloatZeros(ldK, 1) g := matrix.FloatZeros(mnl+G.Rows(), 1) //checkpnt.AddMatrixVar("u", u) //checkpnt.AddMatrixVar("K", K) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { var err error = nil // Zero K for each call. blas.ScalFloat(K, 0.0) if H != nil { K.SetSubMatrix(0, 0, H) } K.SetSubMatrix(n, 0, A) for k := 0; k < n; k++ { // g is (mnl + G.Rows(), 1) matrix, Df is (mnl, n), G is (N, n) if mnl > 0 { // set values g[0:mnl] = Df[,k] g.SetIndexesFromArray(Df.GetColumnArray(k, nil), matrix.MakeIndexSet(0, mnl, 1)...) } // set values g[mnl:] = G[,k] g.SetIndexesFromArray(G.GetColumnArray(k, nil), matrix.MakeIndexSet(mnl, mnl+g.Rows(), 1)...) scale(g, W, true, true) if err != nil { //fmt.Printf("scale error: %s\n", err) } pack(g, K, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", k*ldK + n + p}) } setDiagonal(K, n+p, n+n, ldK, ldK, -1.0) err = lapack.Sytrf(K, ipiv) if err != nil { return nil, err } solve := func(x, y, z *matrix.FloatMatrix) (err error) { // Solve // // [ H A' GG'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy [ = [ by ] // [ W^{-T}*GG 0 -I ] [ W*uz ] [ W^{-T}*bz ] // // and return ux, uy, W*uz. // // On entry, x, y, z contain bx, by, bz. On exit, they contain // the solution ux, uy, W*uz. err = nil blas.Copy(x, u) blas.Copy(y, u, &la.IOpt{"offsety", n}) err = scale(z, W, true, true) if err != nil { return } err = pack(z, u, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", n + p}) if err != nil { return } err = lapack.Sytrs(K, u, ipiv) if err != nil { return } blas.Copy(u, x, &la.IOpt{"n", n}) blas.Copy(u, y, &la.IOpt{"n", p}, &la.IOpt{"offsetx", n}) err = unpack(u, z, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsetx", n + p}) return } return solve, err } return factor, nil }