func (gp *gpConvexProg) F1(x *matrix.FloatMatrix) (f, Df *matrix.FloatMatrix, err error) { f = nil Df = nil err = nil f = matrix.FloatZeros(gp.mnl+1, 1) Df = matrix.FloatZeros(gp.mnl+1, gp.n) y := gp.g.Copy() blas.GemvFloat(gp.F, x, y, 1.0, 1.0) for i, s := range gp.ind { start := s[0] stop := s[1] // yi := exp(yi) = exp(Fi*x+gi) ymax := maxvec(y.FloatArray()[start:stop]) // ynew = exp(y[start:stop] - ymax) ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax)) y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...) // fi = log sum yi = log sum exp(Fi*x+gi) ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start}) f.SetIndex(i, ymax+math.Log(ysum)) blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start}) blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start}, &la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start}, &la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i}) } return }
// The small GP of section 9.3 (Geometric programming). func TestGp(t *testing.T) { xref := []float64{1.06032641296944741, 1.75347359157296845, 2.44603683900611868} aflr := 1000.0 awall := 100.0 alpha := 0.5 beta := 2.0 gamma := 0.5 delta := 2.0 fdata := [][]float64{ []float64{-1.0, 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, 0.0}, []float64{-1.0, 1.0, 0.0, 1.0, 1.0, -1.0, 1.0, -1.0}, []float64{-1.0, 0.0, 1.0, 1.0, 0.0, 0.0, -1.0, 1.0}} gdata := []float64{1.0, 2.0 / awall, 2.0 / awall, 1.0 / aflr, alpha, 1.0 / beta, gamma, 1.0 / delta} g := matrix.FloatNew(8, 1, gdata).Log() F := matrix.FloatMatrixFromTable(fdata) K := []int{1, 2, 1, 1, 1, 1, 1} var solopts SolverOptions solopts.MaxIter = 40 solopts.ShowProgress = false solopts.KKTSolverName = "ldl" sol, err := Gp(K, F, g, nil, nil, nil, nil, &solopts) if sol != nil && sol.Status == Optimal { x := sol.Result.At("x")[0] r := matrix.Exp(x) h := r.GetIndex(0) w := r.GetIndex(1) d := r.GetIndex(2) t.Logf("x=\n%v\n", x.ToString("%.9f")) t.Logf("h = %f, w = %f, d = %f.\n", h, w, d) xe, _ := nrmError(matrix.FloatVector(xref), x) if xe > TOL { t.Logf("x differs [%.3e] from exepted too much.", xe) t.Fail() } } else { t.Logf("status: %v\n", err) t.Fail() } }
func (gp *gpConvexProg) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) { err = nil f = matrix.FloatZeros(gp.mnl+1, 1) Df = matrix.FloatZeros(gp.mnl+1, gp.n) H = matrix.FloatZeros(gp.n, gp.n) y := gp.g.Copy() Fsc := matrix.FloatZeros(gp.maxK, gp.n) blas.GemvFloat(gp.F, x, y, 1.0, 1.0) //fmt.Printf("y=\n%v\n", y.ToString("%.3f")) for i, s := range gp.ind { start := s[0] stop := s[1] // yi := exp(yi) = exp(Fi*x+gi) ymax := maxvec(y.FloatArray()[start:stop]) ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax)) y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...) // fi = log sum yi = log sum exp(Fi*x+gi) ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start}) f.SetIndex(i, ymax+math.Log(ysum)) blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start}) blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start}, &la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start}, &la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i}) Fsc.SetSubMatrix(0, 0, gp.F.GetSubMatrix(start, 0, stop-start)) for k := start; k < stop; k++ { blas.AxpyFloat(Df, Fsc, -1.0, &la.IOpt{"n", gp.n}, &la.IOpt{"incx", gp.mnl + 1}, &la.IOpt{"incy", Fsc.Rows()}, &la.IOpt{"offsetx", i}, &la.IOpt{"offsety", k - start}) blas.ScalFloat(Fsc, math.Sqrt(y.GetIndex(k)), &la.IOpt{"inc", Fsc.Rows()}, &la.IOpt{"offset", k - start}) } // H += z[i]*Hi = z[i] *Fisc' * Fisc blas.SyrkFloat(Fsc, H, z.GetIndex(i), 1.0, la.OptTrans, &la.IOpt{"k", stop - start}) } return }