/* * Build full block reflect T for nc columns from sequence of reflector stored in S. * Reflectors in S are the diagonal of T, off-diagonal values of reflector are computed * from elementary reflector store in lower triangular part of A. */ func buildQRTReflector(T, A, S *cmat.FloatMatrix, nc int, conf *gomas.Config) *gomas.Error { var ATL, ATR, ABL, ABR cmat.FloatMatrix var A00, A10, A11, A20, A21, A22 cmat.FloatMatrix var TTL, TTR, TBL, TBR cmat.FloatMatrix var T00, T01, T02, T11, T12, T22 cmat.FloatMatrix var SL, SR cmat.FloatMatrix var S00, S01, S02 cmat.FloatMatrix util.Partition2x2( &ATL, &ATR, &ABL, &ABR, A, 0, 0, util.PTOPLEFT) util.Partition2x2( &TTL, &TTR, &TBL, &TBR, T, 0, 0, util.PTOPLEFT) util.Partition1x2( &SL, &SR, S, 0, util.PLEFT) nb := conf.LB for m(&ABR)-nb > 0 && n(&ABR)-nb > 0 { util.Repartition2x2to3x3(&ATL, &A00, nil, nil, &A10, &A11, nil, &A20, &A21, &A22, A, nb, util.PBOTTOMRIGHT) util.Repartition2x2to3x3(&TTL, &T00, &T01, &T02, nil, &T11, &T12, nil, nil, &T22, T, nb, util.PBOTTOMRIGHT) util.Repartition1x2to1x3(&SL, &S00, &S01, &S02, S, nb, util.PRIGHT) // -------------------------------------------------------- // update T01: T01 = -T00*Y1.T*Y2*T11 // Y1 = /A10\ Y2 = /A11\ // \A20/ \A21/ // T11.Copy(&S01) updateQRTReflector(&T01, &A10, &A20, &A11, &A21, &T00, &S01, conf) // -------------------------------------------------------- util.Continue3x3to2x2( &ATL, &ATR, &ABL, &ABR, &A00, &A11, &A22, A, util.PBOTTOMRIGHT) util.Continue3x3to2x2( &TTL, &TTR, &TBL, &TBR, &T00, &T11, &T22, T, util.PBOTTOMRIGHT) util.Continue1x3to1x2( &SL, &SR, &S00, &S01, S, util.PRIGHT) } if m(&ABR) > 0 && n(&ABR) > 0 { } return nil }
func testEigen(N int, bits int, t *testing.T) { var A, A0, W, D, V *cmat.FloatMatrix var sD cmat.FloatMatrix var s string = "lower" if bits&gomas.UPPER != 0 { s = "upper" } wsize := N * N if wsize < 100 { wsize = 100 } D = cmat.NewMatrix(N, 1) A = cmat.NewMatrix(N, N) V = cmat.NewMatrix(N, N) src := cmat.NewFloatNormSource() A.SetFrom(src, cmat.SYMM) A0 = cmat.NewCopy(A) W = cmat.NewMatrix(wsize, 1) if err := lapackd.EigenSym(D, A, W, bits|gomas.WANTV); err != nil { t.Errorf("EigenSym error: %v\n", err) return } // ||I - V.T*V|| sD.Diag(V) blasd.Mult(V, A, A, 1.0, 0.0, gomas.TRANSA) blasd.Add(&sD, -1.0) nrm1 := lapackd.NormP(V, lapackd.NORM_ONE) // left vectors are M-by-N V.Copy(A) lapackd.MultDiag(V, D, gomas.RIGHT) blasd.Mult(A0, V, A, -1.0, 1.0, gomas.TRANSB) nrm2 := lapackd.NormP(A0, lapackd.NORM_ONE) t.Logf("N=%d, [%s] ||A - V*D*V.T||_1 :%e\n", N, s, nrm2) t.Logf(" ||I - V.T*V||_1 : %e\n", nrm1) }
func TestSubMatrixCopy(t *testing.T) { var subA, subB cmat.FloatMatrix M := 9 N := 9 A := cmat.NewMatrix(M, N) B := cmat.NewMatrix(M, N) twos := cmat.NewFloatConstSource(2.0) B.SetFrom(twos) subA.SubMatrix(A, 1, 1, M-2, N-2) subB.SubMatrix(B, 1, 1, M-2, N-2) subA.Copy(&subB) ok := subA.AllClose(&subB) if !ok { t.Logf("copy status: %v\n", ok) if N < 9 { t.Logf("subA\n%v\n", subA) } } if N < 10 { t.Logf("A\n%v\n", A) } }
/* * Find diagonal pivot and build incrementaly updated block. * * (AL) (AR) (WL) (WR) * -------------------------- ---------- k'th row in W * x x | c1 w w | k kp1 * x x | c1 d w w | k kp1 * x x | c1 x d w w | k kp1 * x x | c1 x x d w w | k kp1 * x x | c1 r2 r2 r2 r2 w w | k kp1 * x x | c1 x x x r2 d w w | k kp1 * x x | c1 x x x r2 x d w w | k kp1 * * Matrix AR contains the unfactored part of the matrix and AL the already * factored columns. Matrix WL is updated values of factored part ie. * w(i) = l(i)d(i). Matrix WR will have updated values for next column. * Column WR(k) contains updated AR(c1) and WR(kp1) possible pivot row AR(r2). */ func findAndBuildBKPivotLower(AL, AR, WL, WR *cmat.FloatMatrix, k int) (int, int) { var r, q int var rcol, qrow, src, wk, wkp1, wrow cmat.FloatMatrix // Copy AR column 0 to WR column 0 and update with WL[0:] src.SubMatrix(AR, 0, 0, m(AR), 1) wk.SubMatrix(WR, 0, 0, m(AR), 1) wk.Copy(&src) if k > 0 { wrow.SubMatrix(WL, 0, 0, 1, n(WL)) blasd.MVMult(&wk, AL, &wrow, -1.0, 1.0, gomas.NONE) } if m(AR) == 1 { return 0, 1 } amax := math.Abs(WR.Get(0, 0)) // find max off-diagonal on first column. rcol.SubMatrix(WR, 1, 0, m(AR)-1, 1) // r is row index and rmax is its absolute value r = blasd.IAmax(&rcol) + 1 rmax := math.Abs(rcol.Get(r-1, 0)) if amax >= bkALPHA*rmax { // no pivoting, 1x1 diagonal return 0, 1 } // Now we need to copy row r to WR[:,1] and update it wkp1.SubMatrix(WR, 0, 1, m(AR), 1) qrow.SubMatrix(AR, r, 0, 1, r+1) blasd.Copy(&wkp1, &qrow) if r < m(AR)-1 { var wkr cmat.FloatMatrix qrow.SubMatrix(AR, r, r, m(AR)-r, 1) wkr.SubMatrix(&wkp1, r, 0, m(&wkp1)-r, 1) blasd.Copy(&wkr, &qrow) } if k > 0 { // update wkp1 wrow.SubMatrix(WL, r, 0, 1, n(WL)) blasd.MVMult(&wkp1, AL, &wrow, -1.0, 1.0, gomas.NONE) } // set on-diagonal entry to zero to avoid finding it p1 := wkp1.Get(r, 0) wkp1.Set(r, 0, 0.0) // max off-diagonal on r'th column/row at index q q = blasd.IAmax(&wkp1) qmax := math.Abs(wkp1.Get(q, 0)) // restore on-diagonal entry wkp1.Set(r, 0, p1) if amax >= bkALPHA*rmax*(rmax/qmax) { // no pivoting, 1x1 diagonal return 0, 1 } // if q == r then qmax is not off-diagonal, qmax == WR[r,1] and // we get 1x1 pivot as following is always true if math.Abs(WR.Get(r, 1)) >= bkALPHA*qmax { // 1x1 pivoting and interchange with k, r // pivot row in column WR[:,1] to W[:,0] src.SubMatrix(WR, 0, 1, m(AR), 1) wkp1.SubMatrix(WR, 0, 0, m(AR), 1) blasd.Copy(&wkp1, &src) wkp1.Set(0, 0, src.Get(r, 0)) wkp1.Set(r, 0, src.Get(0, 0)) return r, 1 } else { // 2x2 pivoting and interchange with k+1, r return r, 2 } return 0, 1 }
func svdWide(S, U, V, A, W *cmat.FloatMatrix, bits int, conf *gomas.Config) (err *gomas.Error) { var uu, vv *cmat.FloatMatrix var tauq, taup, Wred, sD, sE, L, Vm cmat.FloatMatrix if (bits & (gomas.WANTU | gomas.WANTV)) != 0 { if W.Len() < 4*n(A) { err = gomas.NewError(gomas.ESIZE, "SVD") return } } tauq.SetBuf(m(A)-1, 1, m(A)-1, W.Data()) taup.SetBuf(m(A), 1, m(A), W.Data()[tauq.Len():]) wrl := W.Len() - 2*m(A) - 1 Wred.SetBuf(wrl, 1, wrl, W.Data()[2*m(A)-1:]) if svdCrossover(n(A), m(A)) { goto do_n_much_bigger } // reduce to bidiagonal form if err = BDReduce(A, &tauq, &taup, &Wred, conf); err != nil { return } sD.Diag(A) sE.Diag(A, -1) blasd.Copy(S, &sD) // leftt vectors if bits&gomas.WANTU != 0 { L.SubMatrix(A, 0, 0, m(A), m(A)) U.Copy(&L) cmat.TriL(U, 0) if err = BDBuild(U, &tauq, &Wred, m(U), gomas.WANTQ|gomas.LOWER, conf); err != nil { return } uu = U } // right vectors if bits&gomas.WANTV != 0 { if m(V) == m(A) { // V is M-by-N; copy and make upper triangular V.Copy(A) //cmat.TriU(V, 0) if err = BDBuild(V, &taup, &Wred, m(V), gomas.WANTP, conf); err != nil { return } } else { // V is N-by-N eye := cmat.FloatDiagonalSource{1.0} V.SetFrom(&eye, cmat.SYMM) err = BDMult(V, A, &taup, &Wred, gomas.MULTP|gomas.LEFT|gomas.TRANS, conf) if err != nil { return } } vv = V } err = BDSvd(S, &sE, uu, vv, W, bits|gomas.LOWER) return do_n_much_bigger: // here N >> M, use LQ factor first if err = LQFactor(A, &taup, &Wred, conf); err != nil { return } if bits&gomas.WANTV != 0 { if m(V) == m(A) { V.Copy(A) if err = LQBuild(V, &taup, &Wred, m(A), conf); err != nil { return } } else { // V is N-by-N eye := cmat.FloatDiagonalSource{1.0} V.SetFrom(&eye, cmat.SYMM) if err = LQMult(V, A, &taup, &Wred, gomas.RIGHT, conf); err != nil { return } } } L.SubMatrix(A, 0, 0, m(A), m(A)) cmat.TriL(&L, 0) // resize tauq/taup for UPPER bidiagonal reduction tauq.SetBuf(m(A), 1, m(A), W.Data()) taup.SetBuf(m(A)-1, 1, m(A)-1, W.Data()[tauq.Len():]) // bidiagonal reduce if err = BDReduce(&L, &tauq, &taup, &Wred, conf); err != nil { return } if bits&gomas.WANTV != 0 { Vm.SubMatrix(V, 0, 0, m(A), n(A)) err = BDMult(&Vm, &L, &taup, &Wred, gomas.MULTP|gomas.LEFT|gomas.TRANS, conf) if err != nil { return } vv = V } if bits&gomas.WANTU != 0 { U.Copy(&L) if err = BDBuild(U, &tauq, &Wred, m(U), gomas.WANTQ, conf); err != nil { return } uu = U } sD.Diag(A) sE.Diag(A, 1) blasd.Copy(S, &sD) err = BDSvd(S, &sE, uu, vv, W, bits|gomas.UPPER, conf) return }
func svdSmall(S, U, V, A, W *cmat.FloatMatrix, bits int, conf *gomas.Config) (err *gomas.Error) { var r cmat.FloatMatrix var d0, d1, e0 float64 err = nil K := m(A) if n(A) < K { K = n(A) } tau := cmat.NewMatrix(K, 1) if m(A) >= n(A) { if err = QRFactor(A, tau, W, conf); err != nil { return } } else { if err = LQFactor(A, tau, W, conf); err != nil { return } } if m(A) == 1 || n(A) == 1 { // either tall M-by-1 or wide 1-by-N S.SetAt(0, math.Abs(A.Get(0, 0))) if bits&gomas.WANTU != 0 { if n(A) == 1 { if n(U) == n(A) { // U is M-by-1 U.Copy(A) QRBuild(U, tau, W, n(A), conf) } else { // U is M-by-M eye := cmat.FloatDiagonalSource{1.0} U.SetFrom(&eye, cmat.SYMM) if err = QRMult(U, A, tau, W, gomas.RIGHT, conf); err != nil { return } } } else { U.Set(0, 0, -1.0) } } if bits&gomas.WANTV != 0 { if m(A) == 1 { if m(V) == m(A) { // V is 1-by-N V.Copy(A) LQBuild(V, tau, W, m(A), conf) } else { // V is N-by-N eye := cmat.FloatDiagonalSource{1.0} V.SetFrom(&eye, cmat.SYMM) if err = LQMult(V, A, tau, W, gomas.RIGHT, conf); err != nil { return } } } else { // V is 1-by-1 V.Set(0, 0, -1.0) } } return } // Use bdSvd2x2 functions d0 = A.Get(0, 0) d1 = A.Get(1, 1) if m(A) >= n(A) { e0 = A.Get(0, 1) } else { e0 = A.Get(1, 0) } if bits&(gomas.WANTU|gomas.WANTV) == 0 { // no vectors smin, smax := bdSvd2x2(d0, e0, d1) S.SetAt(0, math.Abs(smax)) S.SetAt(1, math.Abs(smin)) return } // at least left or right eigenvector wanted smin, smax, cosl, sinl, cosr, sinr := bdSvd2x2Vec(d0, e0, d1) if bits&gomas.WANTU != 0 { // left eigenvectors if m(A) >= n(A) { if n(U) == n(A) { U.Copy(A) if err = QRBuild(U, tau, W, n(A), conf); err != nil { return } } else { // U is M-by-M eye := cmat.FloatDiagonalSource{1.0} U.SetFrom(&eye, cmat.SYMM) if err = QRMult(U, A, tau, W, gomas.RIGHT, conf); err != nil { return } } ApplyGivensRight(U, 0, 1, 0, m(A), cosl, sinl) } else { // U is 2-by-2 eye := cmat.FloatDiagonalSource{1.0} U.SetFrom(&eye, cmat.SYMM) ApplyGivensRight(U, 0, 1, 0, m(A), cosr, sinr) } } if bits&gomas.WANTV != 0 { if n(A) > m(A) { if m(V) == m(A) { V.Copy(A) if err = LQBuild(V, tau, W, m(A), conf); err != nil { return } } else { eye := cmat.FloatDiagonalSource{1.0} V.SetFrom(&eye, cmat.SYMM) if err = LQMult(V, A, tau, W, gomas.RIGHT, conf); err != nil { return } } ApplyGivensLeft(V, 0, 1, 0, n(A), cosl, sinl) } else { // V is 2-by-2 eye := cmat.FloatDiagonalSource{1.0} V.SetFrom(&eye, cmat.SYMM) ApplyGivensLeft(V, 0, 1, 0, n(A), cosr, sinr) } if smax < 0.0 { r.Row(V, 0) blasd.Scale(&r, -1.0) } if smin < 0.0 { r.Row(V, 1) blasd.Scale(&r, -1.0) } } S.SetAt(0, math.Abs(smax)) S.SetAt(1, math.Abs(smin)) return }
// Compute SVD when m(A) >= n(A) func svdTall(S, U, V, A, W *cmat.FloatMatrix, bits int, conf *gomas.Config) (err *gomas.Error) { var uu, vv *cmat.FloatMatrix var tauq, taup, Wred, sD, sE, R, Un cmat.FloatMatrix if (bits & (gomas.WANTU | gomas.WANTV)) != 0 { if W.Len() < 4*n(A) { err = gomas.NewError(gomas.ESIZE, "SVD") return } } tauq.SetBuf(n(A), 1, n(A), W.Data()) taup.SetBuf(n(A)-1, 1, n(A)-1, W.Data()[tauq.Len():]) wrl := W.Len() - 2*n(A) - 1 Wred.SetBuf(wrl, 1, wrl, W.Data()[2*n(A)-1:]) if svdCrossover(m(A), n(A)) { goto do_m_much_bigger } // reduce to bidiagonal form if err = BDReduce(A, &tauq, &taup, &Wred, conf); err != nil { return } sD.Diag(A) sE.Diag(A, 1) blasd.Copy(S, &sD) // left vectors if bits&gomas.WANTU != 0 { if n(U) == n(A) { // U is M-by-N; copy and make lower triangular U.Copy(A) cmat.TriL(U, 0) if err = BDBuild(U, &tauq, &Wred, n(U), gomas.WANTQ, conf); err != nil { return } } else { // U is M-by-M eye := cmat.FloatDiagonalSource{1.0} U.SetFrom(&eye, cmat.SYMM) if err = BDMult(U, A, &tauq, &Wred, gomas.MULTQ|gomas.RIGHT, conf); err != nil { return } } uu = U } // right vectors if bits&gomas.WANTV != 0 { R.SubMatrix(A, 0, 0, n(A), n(A)) V.Copy(&R) cmat.TriU(V, 0) if err = BDBuild(V, &taup, &Wred, m(V), gomas.WANTP, conf); err != nil { return } vv = V } err = BDSvd(S, &sE, uu, vv, W, bits|gomas.UPPER) return do_m_much_bigger: // M >> N here; first use QR factorization if err = QRFactor(A, &tauq, &Wred, conf); err != nil { return } if bits&gomas.WANTU != 0 { if n(U) == n(A) { U.Copy(A) if err = QRBuild(U, &tauq, &Wred, n(U), conf); err != nil { return } } else { // U is M-by-M eye := cmat.FloatDiagonalSource{1.0} U.SetFrom(&eye, cmat.SYMM) if err = QRMult(U, A, &tauq, &Wred, gomas.LEFT, conf); err != nil { return } } } R.SubMatrix(A, 0, 0, n(A), n(A)) cmat.TriU(&R, 0) // bidiagonal reduce if err = BDReduce(&R, &tauq, &taup, &Wred, conf); err != nil { return } if bits&gomas.WANTU != 0 { Un.SubMatrix(U, 0, 0, m(A), n(A)) if err = BDMult(&Un, &R, &tauq, &Wred, gomas.MULTQ|gomas.RIGHT, conf); err != nil { return } uu = U } if bits&gomas.WANTV != 0 { V.Copy(&R) if err = BDBuild(V, &taup, &Wred, m(V), gomas.WANTP, conf); err != nil { return } vv = V } sD.Diag(A) sE.Diag(A, 1) blasd.Copy(S, &sD) err = BDSvd(S, &sE, uu, vv, W, bits|gomas.UPPER, conf) return }