/* Applies Nesterov-Todd scaling or its inverse. Computes x := W*x (trans is false 'N', inverse = false 'N') x := W^T*x (trans is true 'T', inverse = false 'N') x := W^{-1}*x (trans is false 'N', inverse = true 'T') x := W^{-T}*x (trans is true 'T', inverse = true 'T'). x is a dense float matrix. W is a MatrixSet with entries: - W['dnl']: positive vector - W['dnli']: componentwise inverse of W['dnl'] - W['d']: positive vector - W['di']: componentwise inverse of W['d'] - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms - W['beta']: list of positive numbers - W['r']: list of square matrices - W['rti']: list of square matrices. rti[k] is the inverse transpose of r[k]. The 'dnl' and 'dnli' entries are optional, and only present when the function is called from the nonlinear solver. */ func scale(x *matrix.FloatMatrix, W *FloatMatrixSet, trans, inverse bool) (err error) { /*DEBUGGED*/ var wl []*matrix.FloatMatrix var w *matrix.FloatMatrix ind := 0 err = nil // Scaling for nonlinear component xk is xk := dnl .* xk; inverse // scaling is xk ./ dnl = dnli .* xk, where dnl = W['dnl'], // dnli = W['dnli']. if wl = W.At("dnl"); wl != nil { if inverse { w = W.At("dnli")[0] } else { w = W.At("dnl")[0] } for k := 0; k < x.Cols(); k++ { err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k * x.Rows()}) if err != nil { return } } ind += w.Rows() } // Scaling for linear 'l' component xk is xk := d .* xk; inverse // scaling is xk ./ d = di .* xk, where d = W['d'], di = W['di']. if inverse { w = W.At("di")[0] } else { w = W.At("d")[0] } for k := 0; k < x.Cols(); k++ { err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k*x.Rows() + ind}) if err != nil { return } } ind += w.Rows() // Scaling for 'q' component is // // xk := beta * (2*v*v' - J) * xk // = beta * (2*v*(xk'*v)' - J*xk) // // where beta = W['beta'][k], v = W['v'][k], J = [1, 0; 0, -I]. // //Inverse scaling is // // xk := 1/beta * (2*J*v*v'*J - J) * xk // = 1/beta * (-J) * (2*v*((-J*xk)'*v)' + xk). //wf := matrix.FloatZeros(x.Cols(), 1) w = matrix.FloatZeros(x.Cols(), 1) for k, v := range W.At("v") { m := v.Rows() if inverse { blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()}) } err = blas.GemvFloat(x, v, w, 1.0, 0.0, la_.OptTrans, &la_.IOpt{"m", m}, &la_.IOpt{"n", x.Cols()}, &la_.IOpt{"offsetA", ind}, &la_.IOpt{"lda", x.Rows()}) if err != nil { return } err = blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()}) if err != nil { return } err = blas.GerFloat(v, w, x, 2.0, &la_.IOpt{"m", m}, &la_.IOpt{"n", x.Cols()}, &la_.IOpt{"lda", x.Rows()}, &la_.IOpt{"offsetA", ind}) if err != nil { return } var a float64 if inverse { blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()}) // a[i,j] := 1.0/W[i,j] a = 1.0 / W.At("beta")[0].GetIndex(k) } else { a = W.At("beta")[0].GetIndex(k) } for i := 0; i < x.Cols(); i++ { blas.ScalFloat(x, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind + i*x.Rows()}) } ind += m } // Scaling for 's' component xk is // // xk := vec( r' * mat(xk) * r ) if trans = 'N' // xk := vec( r * mat(xk) * r' ) if trans = 'T'. // // r is kth element of W['r']. // // Inverse scaling is // // xk := vec( rti * mat(xk) * rti' ) if trans = 'N' // xk := vec( rti' * mat(xk) * rti ) if trans = 'T'. // // rti is kth element of W['rti']. maxn := 0 for _, r := range W.At("r") { if r.Rows() > maxn { maxn = r.Rows() } } a := matrix.FloatZeros(maxn, maxn) for k, v := range W.At("r") { t := trans var r *matrix.FloatMatrix if !inverse { r = v t = !trans } else { r = W.At("rti")[k] } n := r.Rows() for i := 0; i < x.Cols(); i++ { // scale diagonal of xk by 0.5 blas.ScalFloat(x, 0.5, &la_.IOpt{"offset", ind + i*x.Rows()}, &la_.IOpt{"inc", n + 1}, &la_.IOpt{"n", n}) // a = r*tril(x) (t is 'N') or a = tril(x)*r (t is 'T') blas.Copy(r, a) if !t { err = blas.TrmmFloat(x, a, 1.0, la_.OptRight, &la_.IOpt{"m", n}, &la_.IOpt{"n", n}, &la_.IOpt{"lda", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"offsetA", ind + i*x.Rows()}) if err != nil { return } // x := (r*a' + a*r') if t is 'N' err = blas.Syr2kFloat(r, a, x, 1.0, 0.0, la_.OptNoTrans, &la_.IOpt{"n", n}, &la_.IOpt{"k", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"ldc", n}, &la_.IOpt{"offsetC", ind + i*x.Rows()}) if err != nil { return } } else { err = blas.TrmmFloat(x, a, 1.0, la_.OptLeft, &la_.IOpt{"m", n}, &la_.IOpt{"n", n}, &la_.IOpt{"lda", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"offsetA", ind + i*x.Rows()}) if err != nil { return } // x := (r'*a + a'*r) if t is 'T' err = blas.Syr2kFloat(r, a, x, 1.0, 0.0, la_.OptTrans, &la_.IOpt{"n", n}, &la_.IOpt{"k", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"ldc", n}, &la_.IOpt{"offsetC", ind + i*x.Rows()}) if err != nil { return } } } ind += n * n } return }
/* Returns the Nesterov-Todd scaling W at points s and z, and stores the scaled variable in lmbda. W * z = W^{-T} * s = lmbda. W is a MatrixSet with entries: - W['dnl']: positive vector - W['dnli']: componentwise inverse of W['dnl'] - W['d']: positive vector - W['di']: componentwise inverse of W['d'] - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms - W['beta']: list of positive numbers - W['r']: list of square matrices - W['rti']: list of square matrices. rti[k] is the inverse transpose of r[k]. */ func computeScaling(s, z, lmbda *matrix.FloatMatrix, dims *DimensionSet, mnl int) (W *FloatMatrixSet, err error) { /*DEBUGGED*/ err = nil W = FloatSetNew("dnl", "dnli", "d", "di", "v", "beta", "r", "rti") // For the nonlinear block: // // W['dnl'] = sqrt( s[:mnl] ./ z[:mnl] ) // W['dnli'] = sqrt( z[:mnl] ./ s[:mnl] ) // lambda[:mnl] = sqrt( s[:mnl] .* z[:mnl] ) var stmp, ztmp, lmd *matrix.FloatMatrix if mnl > 0 { stmp = matrix.FloatVector(s.FloatArray()[:mnl]) ztmp = matrix.FloatVector(z.FloatArray()[:mnl]) dnl := stmp.Div(ztmp) dnl.Apply(dnl, math.Sqrt) dnli := dnl.Copy() dnli.Apply(dnli, func(a float64) float64 { return 1.0 / a }) W.Set("dnl", dnl) W.Set("dnli", dnli) lmd = stmp.Mul(ztmp) lmd.Apply(lmd, math.Sqrt) lmbda.SetIndexes(matrix.MakeIndexSet(0, mnl, 1), lmd.FloatArray()) } else { mnl = 0 } // For the 'l' block: // // W['d'] = sqrt( sk ./ zk ) // W['di'] = sqrt( zk ./ sk ) // lambdak = sqrt( sk .* zk ) // // where sk and zk are the first dims['l'] entries of s and z. // lambda_k is stored in the first dims['l'] positions of lmbda. m := dims.At("l")[0] td := s.FloatArray() stmp = matrix.FloatVector(td[mnl : mnl+m]) zd := z.FloatArray() //fmt.Printf("zdata=%v\n", zd[mnl:mnl+m]) ztmp = matrix.FloatVector(zd[mnl : mnl+m]) d := stmp.Div(ztmp) d.Apply(d, math.Sqrt) di := d.Copy() di.Apply(di, func(a float64) float64 { return 1.0 / a }) //fmt.Printf("d:\n%v\n", d) //fmt.Printf("di:\n%v\n", di) W.Set("d", d) W.Set("di", di) lmd = stmp.Mul(ztmp) lmd.Apply(lmd, math.Sqrt) // lmd has indexes mnl:mnl+m and length of m lmbda.SetIndexes(matrix.MakeIndexSet(mnl, mnl+m, 1), lmd.FloatArray()) //fmt.Printf("after l:\n%v\n", lmbda) /* For the 'q' blocks, compute lists 'v', 'beta'. The vector v[k] has unit hyperbolic norm: (sqrt( v[k]' * J * v[k] ) = 1 with J = [1, 0; 0, -I]). beta[k] is a positive scalar. The hyperbolic Householder matrix H = 2*v[k]*v[k]' - J defined by v[k] satisfies (beta[k] * H) * zk = (beta[k] * H) \ sk = lambda_k where sk = s[indq[k]:indq[k+1]], zk = z[indq[k]:indq[k+1]]. lambda_k is stored in lmbda[indq[k]:indq[k+1]]. */ ind := mnl + dims.At("l")[0] var beta *matrix.FloatMatrix for _, k := range dims.At("q") { W.Append("v", matrix.FloatZeros(k, 1)) } beta = matrix.FloatZeros(len(dims.At("q")), 1) W.Set("beta", beta) vset := W.At("v") for k, m := range dims.At("q") { v := vset[k] // a = sqrt( sk' * J * sk ) where J = [1, 0; 0, -I] aa := jnrm2(s, m, ind) // b = sqrt( zk' * J * zk ) bb := jnrm2(z, m, ind) // beta[k] = ( a / b )**1/2 beta.SetIndex(k, math.Sqrt(aa/bb)) // c = sqrt( (sk/a)' * (zk/b) + 1 ) / sqrt(2) c0 := blas.DotFloat(s, z, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}) cc := math.Sqrt((c0/aa/bb + 1.0) / 2.0) // vk = 1/(2*c) * ( (sk/a) + J * (zk/b) ) blas.CopyFloat(z, v, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) blas.ScalFloat(v, -1.0/bb) v.SetIndex(0, -1.0*v.GetIndex(0)) blas.AxpyFloat(s, v, 1.0/aa, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m}) blas.ScalFloat(v, 1.0/2.0/cc) // v[k] = 1/sqrt(2*(vk0 + 1)) * ( vk + e ), e = [1; 0] v.SetIndex(0, v.GetIndex(0)+1.0) blas.ScalFloat(v, (1.0 / math.Sqrt(2.0*v.GetIndex(0)))) /* To get the scaled variable lambda_k d = sk0/a + zk0/b + 2*c lambda_k = [ c; (c + zk0/b)/d * sk1/a + (c + sk0/a)/d * zk1/b ] lambda_k *= sqrt(a * b) */ lmbda.SetIndex(ind, cc) dd := 2*cc + s.GetIndex(ind)/aa + z.GetIndex(ind)/bb blas.CopyFloat(s, lmbda, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) zz := (cc + z.GetIndex(ind)/bb) / dd / aa ss := (cc + s.GetIndex(ind)/aa) / dd / bb blas.ScalFloat(lmbda, zz, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1}) blas.AxpyFloat(z, lmbda, ss, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}, &la_.IOpt{"n", m - 1}) blas.ScalFloat(lmbda, math.Sqrt(aa*bb), &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) ind += m //fmt.Printf("after q[%d]:\n%v\n", k, lmbda) } /* For the 's' blocks: compute two lists 'r' and 'rti'. r[k]' * sk^{-1} * r[k] = diag(lambda_k)^{-1} r[k]' * zk * r[k] = diag(lambda_k) where sk and zk are the entries inds[k] : inds[k+1] of s and z, reshaped into symmetric matrices. rti[k] is the inverse of r[k]', so rti[k]' * sk * rti[k] = diag(lambda_k)^{-1} rti[k]' * zk^{-1} * rti[k] = diag(lambda_k). The vectors lambda_k are stored in lmbda[ dims['l'] + sum(dims['q']) : -1 ] */ for _, k := range dims.At("s") { W.Append("r", matrix.FloatZeros(k, k)) W.Append("rti", matrix.FloatZeros(k, k)) } maxs := maxdim(dims.At("s")) work := matrix.FloatZeros(maxs*maxs, 1) Ls := matrix.FloatZeros(maxs*maxs, 1) Lz := matrix.FloatZeros(maxs*maxs, 1) ind2 := ind for k, m := range dims.At("s") { r := W.At("r")[k] rti := W.At("rti")[k] // Factor sk = Ls*Ls'; store Ls in ds[inds[k]:inds[k+1]]. blas.CopyFloat(s, Ls, &la_.IOpt{"offsetx", ind2}, &la_.IOpt{"n", m * m}) lapack.PotrfFloat(Ls, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) // Factor zs[k] = Lz*Lz'; store Lz in dz[inds[k]:inds[k+1]]. blas.CopyFloat(z, Lz, &la_.IOpt{"offsetx", ind2}, &la_.IOpt{"n", m * m}) lapack.PotrfFloat(Lz, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) // SVD Lz'*Ls = U*diag(lambda_k)*V'. Keep U in work. for i := 0; i < m; i++ { blas.ScalFloat(Ls, 0.0, &la_.IOpt{"offset", i * m}, &la_.IOpt{"n", i}) } blas.CopyFloat(Ls, work, &la_.IOpt{"n", m * m}) blas.TrmmFloat(Lz, work, 1.0, la_.OptTransA, &la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) lapack.GesvdFloat(work, lmbda, nil, nil, la_.OptJobuO, &la_.IOpt{"lda", m}, &la_.IOpt{"offsetS", ind}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // r = Lz^{-T} * U blas.CopyFloat(work, r, &la_.IOpt{"n", m * m}) blas.TrsmFloat(Lz, r, 1.0, la_.OptTransA, &la_.IOpt{"lda", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // rti = Lz * U blas.CopyFloat(work, rti, &la_.IOpt{"n", m * m}) blas.TrmmFloat(Lz, rti, 1.0, &la_.IOpt{"lda", m}, &la_.IOpt{"n", m}, &la_.IOpt{"m", m}) // r := r * diag(sqrt(lambda_k)) // rti := rti * diag(1 ./ sqrt(lambda_k)) for i := 0; i < m; i++ { a := math.Sqrt(lmbda.GetIndex(ind + i)) blas.ScalFloat(r, a, &la_.IOpt{"offset", m * i}, &la_.IOpt{"n", m}) blas.ScalFloat(rti, 1.0/a, &la_.IOpt{"offset", m * i}, &la_.IOpt{"n", m}) } ind += m ind2 += m * m } return }