func checkSytrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error { arows := ind.LDa if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return onError("A not square") } } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("Sytrf: lda") } if ind.OffsetA < 0 { return onError("Sytrf: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Sytrf: sizeA") } if ipiv != nil && len(ipiv) < ind.N { return onError("Sytrf: size ipiv") } return nil }
func checkPotrf(ind *linalg.IndexOpts, A matrix.Matrix) error { arows := ind.LDa if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return onError("Potrf: not square") } } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("Potrf: lda") } if ind.OffsetA < 0 { return onError("Potrf: offsetA") } if A.NumElements() < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Potrf: sizeA") } return nil }
/* LU factorization of a real or complex tridiagonal matrix. PURPOSE Factors an n by n real or complex tridiagonal matrix A as A = P*L*U. A is specified by its lower diagonal dl, diagonal d, and upper diagonal du. On exit dl, d, du, du2 and ipiv contain the details of the factorization. ARGUMENTS. DL float or complex matrix D float or complex matrix. Must have the same type as DL. DU float or complex matrix. Must have the same type as DL. DU2 float or complex matrix of length at least n-2. Must have the same type as DL. ipiv int vector of length at least n OPTIONS n nonnegative integer. If negative, the default value is used. offsetdl nonnegative integer offsetd nonnegative integer offsetdu nonnegative integer */ func Gtrrf(DL, D, DU, DU2 matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.OffsetD < 0 { return onError("Gttrf: offset D") } if ind.N < 0 { ind.N = D.NumElements() - ind.OffsetD } if ind.N < 0 { return onError("Gttrf: size D") } if ind.N == 0 { return nil } if ind.OffsetDL < 0 { return onError("Gttrf: offset DL") } sizeDL := DL.NumElements() if sizeDL < ind.OffsetDL+ind.N-1 { return onError("Gttrf: sizeDL") } if ind.OffsetDU < 0 { return onError("Gttrf: offset DU") } sizeDU := DU.NumElements() if sizeDU < ind.OffsetDU+ind.N-1 { return onError("Gttrf: sizeDU") } sizeDU2 := DU2.NumElements() if sizeDU2 < ind.N-2 { return onError("Gttrf: sizeDU2") } if len(ipiv) < ind.N { return onError("Gttrf: size ipiv") } info := -1 if !matrix.EqualTypes(DL, D, DU, DU2) { return onError("Gttrf: arguments not same type") } switch DL.(type) { case *matrix.FloatMatrix: DLa := DL.(*matrix.FloatMatrix).FloatArray() Da := D.(*matrix.FloatMatrix).FloatArray() DUa := DU.(*matrix.FloatMatrix).FloatArray() DU2a := DU2.(*matrix.FloatMatrix).FloatArray() info = dgttrf(ind.N, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a, ipiv) case *matrix.ComplexMatrix: return onError("Gttrf: complex not yet implemented") } if info != 0 { return onError(fmt.Sprintf("Gttrf lapack error: %d", info)) } return nil }
/* LU factorization of a general real or complex m by n matrix. PURPOSE On exit, A is replaced with L, U in the factorization P*A = L*U and ipiv contains the permutation: P = P_min{m,n} * ... * P2 * P1 where Pi interchanges rows i and ipiv[i] of A (using the Fortran convention, i.e., the first row is numbered 1). ARGUMENTS A float or complex matrix ipiv int vector of length at least min(m,n) OPTIONS m nonnegative integer. If negative, the default value is used. n nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,m). If zero, the default value is used. offsetA nonnegative integer */ func Getrf(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) arows := ind.LDa if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.N == 0 || ind.M == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return onError("lda") } if ind.OffsetA < 0 { return onError("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.M { return onError("sizeA") } if ipiv != nil && len(ipiv) < min(ind.N, ind.M) { return onError("size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() info = dgetrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv) case *matrix.ComplexMatrix: } if info != 0 { return onError("Getrf call error") } return nil }
func checkGbtrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error { arows := ind.LDa if ind.M < 0 { return onError("Gbtrf: illegal m") } if ind.Kl < 0 { return onError("GBtrf: illegal kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.M == 0 || ind.N == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return onError("Gbtrf: invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return onError("Gbtrf: lda") } if ind.OffsetA < 0 { return onError("Gbtrf: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+2*ind.Kl+ind.Ku+1 { return onError("Gbtrf: sizeA") } if ipiv != nil && len(ipiv) < min(ind.N, ind.M) { return onError("Gbtrf: size ipiv") } return nil }
/* Inverse of a real or complex matrix. PURPOSE Computes the inverse of real or complex matrix of order n. On entry, A and ipiv contain the LU factorization, as returned by gesv() or getrf(). On exit A is replaced by the inverse. ARGUMENTS A float or complex matrix ipiv int vector OPTIONS n nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. offsetA nonnegative integer; */ func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) arows := ind.LDa if ind.N < 0 { ind.N = A.Cols() } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.OffsetA < 0 { return onError("Getri: offset") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Getri: sizeA") } if ipiv != nil && len(ipiv) < ind.N { return onError("Getri: size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv) case *matrix.ComplexMatrix: return onError("Getri: complex not yet implemented") } if info != 0 { return onError(fmt.Sprintf("Getri lapack error: %d", info)) } return nil }
/* Solves a real or complex set of linear equations with a banded coefficient matrix, given the LU factorization computed by gbtrf() or gbsv(). PURPOSE Solves linear equations A*X = B, if trans is PNoTrans A^T*X = B, if trans is PTrans A^H*X = B, if trans is PConjTrans On entry, A and ipiv contain the LU factorization of an n by n band matrix A as computed by Getrf() or Gbsv(). On exit B is replaced by the solution X. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. ipiv int vector kl nonnegative integer OPTIONS trans PNoTrans, PTrans or PConjTrans n nonnegative integer. If negative, the default value is used. ku nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer, ldA >= 2*kl+ku+1. If zero, the default value is used. ldB positive integer, ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Gbtrs(A, B matrix.Matrix, ipiv []int32, KL int, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) ind.Kl = KL arows := ind.LDa brows := ind.LDb if ind.Kl < 0 { return onError("Gbtrs: invalid kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = A.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return onError("Gbtrs: invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return onError("Gbtrs: ldA") } if ind.OffsetA < 0 { return onError("Gbtrs: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+2*ind.Kl+ind.Ku+1 { return onError("Gbtrs: sizeA") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.OffsetB < 0 { return onError("Gbtrs: offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*brows+ind.N { return onError("Gbtrs: sizeB") } if ipiv != nil && len(ipiv) < ind.N { return onError("Gbtrs: size ipiv") } if !matrix.EqualTypes(A, B) { return onError("Gbtrs: arguments not of same type") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() Ba := B.(*matrix.FloatMatrix).FloatArray() trans := linalg.ParamString(pars.Trans) info = dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return onError("Gbtrs: complex not yet implemented") } if info != 0 { return onError(fmt.Sprintf("Gbtrs lapack error: %d", info)) } return nil }
/* Solves a real or complex tridiagonal set of linear equations, given the LU factorization computed by gttrf(). PURPOSE solves A*X=B, if trans is PNoTrans solves A^T*X=B, if trans is PTrans solves A^H*X=B, if trans is PConjTrans On entry, DL, D, DU, DU2 and ipiv contain the LU factorization of an n by n tridiagonal matrix A as computed by gttrf(). On exit B is replaced by the solution X. ARGUMENTS. DL float or complex matrix D float or complex matrix. Must have the same type as dl. DU float or complex matrix. Must have the same type as dl. DU2 float or complex matrix. Must have the same type as dl. B float or complex matrix. Must have the same type oas dl. ipiv int vector OPTIONS trans PNoTrans, PTrans, PConjTrans n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldB positive integer, ldB >= max(1,n). If zero, the default value is used. offsetdl nonnegative integer offsetd nonnegative integer offsetdu nonnegative integer offsetB nonnegative integer */ func Gtrrs(DL, D, DU, DU2, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) brows := ind.LDb if ind.OffsetD < 0 { return onError("Gttrs: offset D") } if ind.N < 0 { ind.N = D.NumElements() - ind.OffsetD } if ind.N < 0 { return onError("Gttrs: size D") } if ind.N == 0 { return nil } if ind.OffsetDL < 0 { return onError("Gttrs: offset DL") } sizeDL := DL.NumElements() if sizeDL < ind.OffsetDL+ind.N-1 { return onError("Gttrs: sizeDL") } if ind.OffsetDU < 0 { return onError("Gttrs: offset DU") } sizeDU := DU.NumElements() if sizeDU < ind.OffsetDU+ind.N-1 { return onError("Gttrs: sizeDU") } sizeDU2 := DU2.NumElements() if sizeDU2 < ind.N-2 { return onError("Gttrs: sizeDU2") } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.Nrhs == 0 { return nil } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return onError("Gttrs: ldB") } if ind.OffsetB < 0 { return onError("Gttrs: offset B") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*brows+ind.N { return onError("Gttrs: sizeB") } if len(ipiv) < ind.N { return onError("Gttrs: size ipiv") } if !matrix.EqualTypes(DL, D, DU, DU2, B) { return onError("Gttrs: matrix types") } var info int = -1 switch DL.(type) { case *matrix.FloatMatrix: DLa := DL.(*matrix.FloatMatrix).FloatArray() Da := D.(*matrix.FloatMatrix).FloatArray() DUa := DU.(*matrix.FloatMatrix).FloatArray() DU2a := DU2.(*matrix.FloatMatrix).FloatArray() Ba := B.(*matrix.FloatMatrix).FloatArray() trans := linalg.ParamString(pars.Trans) info = dgttrs(trans, ind.N, ind.Nrhs, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a, ipiv, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return onError("Gttrs: complex valued not yet implemented") } if info != 0 { return onError(fmt.Sprintf("Gttrs lapack error: %d", info)) } return nil }
func checkSyevd(ind *linalg.IndexOpts, A, W matrix.Matrix) error { arows := ind.LDa if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return onError("Syevd: A not square") } } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("Syevd: lda") } if ind.OffsetA < 0 { return onError("Syevd: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Syevd: sizeA") } if ind.OffsetW < 0 { return onError("Syevd: offsetW") } sizeW := W.NumElements() if sizeW < ind.OffsetW+ind.N { return onError("Syevd: sizeW") } return nil }
func checkGbtrs(ind *linalg.IndexOpts, A, B matrix.Matrix, ipiv []int32) error { arows := ind.LDa brows := ind.LDb if ind.Kl < 0 { return onError("Gbtrs: invalid kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = A.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return onError("Gbtrs: invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return onError("Gbtrs: lda") } if ind.OffsetA < 0 { return onError("Gbtrs: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+2*ind.Kl+ind.Ku+1 { return onError("Gbtrs: sizeA") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.OffsetB < 0 { return onError("Gbtrs: offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*brows+ind.N { return onError("Gbtrs: sizeB") } if ipiv != nil && len(ipiv) < ind.N { return onError("Gbtrs: size ipiv") } return nil }
func check_level3_func(ind *linalg.IndexOpts, fn funcNum, A, B, C matrix.Matrix, pars *linalg.Parameters) (err error) { // defaults for these arows := ind.LDa brows := ind.LDb crows := ind.LDc switch fn { case fgemm: if ind.M < 0 { if pars.TransA == linalg.PNoTrans { ind.M = A.Rows() } else { ind.M = A.Cols() } } if ind.N < 0 { if pars.TransB == linalg.PNoTrans { ind.N = B.Cols() } else { ind.N = B.Rows() } } if ind.M == 0 || ind.N == 0 { return nil } if ind.K < 0 { if pars.TransA == linalg.PNoTrans { ind.K = A.Cols() } else { ind.K = A.Rows() } if pars.TransB == linalg.PNoTrans && ind.K != B.Rows() || pars.TransB != linalg.PNoTrans && ind.K != B.Cols() { return onError("dimensions of A and B do not match") } } if ind.OffsetA < 0 { return onError("offsetA illegal, <0") } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.K > 0 { if (pars.TransA == linalg.PNoTrans && ind.LDa < max(1, ind.M)) || (pars.TransA != linalg.PNoTrans && ind.LDa < max(1, ind.K)) { return onError("inconsistent ldA") } sizeA := A.NumElements() if (pars.TransA == linalg.PNoTrans && sizeA < ind.OffsetA+(ind.K-1)*arows+ind.M) || (pars.TransA != linalg.PNoTrans && sizeA < ind.OffsetA+(ind.M-1)*arows+ind.K) { return onError("sizeA") } } // B matrix if ind.OffsetB < 0 { return onError("offsetB illegal, <0") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.K > 0 { if (pars.TransB == linalg.PNoTrans && ind.LDb < max(1, ind.K)) || (pars.TransB != linalg.PNoTrans && ind.LDb < max(1, ind.N)) { return onError("inconsistent ldB") } sizeB := B.NumElements() if (pars.TransB == linalg.PNoTrans && sizeB < ind.OffsetB+(ind.N-1)*brows+ind.K) || (pars.TransB != linalg.PNoTrans && sizeB < ind.OffsetB+(ind.K-1)*brows+ind.N) { return onError("sizeB") } } // C matrix if ind.OffsetC < 0 { return onError("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDc = max(1, C.LeadingIndex()) crows = max(1, C.Rows()) } if ind.LDc < max(1, ind.M) { return onError("inconsistent ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*crows+ind.M { return onError("sizeC") } case fsymm, ftrmm, ftrsm: if ind.M < 0 { ind.M = B.Rows() if pars.Side == linalg.PLeft && (ind.M != A.Rows() || ind.M != A.Cols()) { return onError("dimensions of A and B do not match") } } if ind.N < 0 { ind.N = B.Cols() if pars.Side == linalg.PRight && (ind.N != A.Rows() || ind.N != A.Cols()) { return onError("dimensions of A and B do not match") } } if ind.M == 0 || ind.N == 0 { return } // check A if ind.OffsetB < 0 { return onError("offsetB illegal, <0") } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if pars.Side == linalg.PLeft && ind.LDa < max(1, ind.M) || ind.LDa < max(1, ind.N) { return onError("ldA") } sizeA := A.NumElements() if (pars.Side == linalg.PLeft && sizeA < ind.OffsetA+(ind.M-1)*arows+ind.M) || (pars.Side == linalg.PRight && sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N) { return onError("sizeA") } if B != nil { if ind.OffsetB < 0 { return onError("offsetB illegal, <0") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.LDb < max(1, ind.M) { return onError("ldB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.N-1)*brows+ind.M { return onError("sizeB") } } if C != nil { if ind.OffsetC < 0 { return onError("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDc = max(1, C.LeadingIndex()) crows = max(1, C.Rows()) } if ind.LDc < max(1, ind.M) { return onError("ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*crows+ind.M { return onError("sizeC") } } case fsyrk: if ind.N < 0 { if pars.Trans == linalg.PNoTrans { ind.N = A.Rows() } else { ind.N = A.Cols() } //ind.N = C.Rows() } if ind.K < 0 { if pars.Trans == linalg.PNoTrans { ind.K = A.Cols() } else { ind.K = A.Rows() } } if ind.N == 0 { return } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.OffsetA < 0 { return onError("offsetA") } if ind.K > 0 { if (pars.Trans == linalg.PNoTrans && ind.LDa < max(1, ind.N)) || (pars.Trans != linalg.PNoTrans && ind.LDa < max(1, ind.K)) { return onError("inconsistent ldA") } sizeA := A.NumElements() if (pars.Trans == linalg.PNoTrans && sizeA < ind.OffsetA+(ind.K-1)*arows+ind.N) || (pars.TransA != linalg.PNoTrans && sizeA < ind.OffsetA+(ind.N-1)*arows+ind.K) { return onError("sizeA") } } if ind.OffsetC < 0 { return onError("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDc = max(1, C.LeadingIndex()) crows = max(1, C.Rows()) } if ind.LDc < max(1, ind.N) { return onError("ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*crows+ind.N { return onError("sizeC") } case fsyr2k: if ind.N < 0 { if pars.Trans == linalg.PNoTrans { ind.N = A.Rows() if ind.N != B.Rows() { return onError("dimensions of A and B do not match") } } else { ind.N = A.Cols() if ind.N != B.Cols() { return onError("dimensions of A and B do not match") } } } if ind.N == 0 { return } if ind.K < 0 { if pars.Trans == linalg.PNoTrans { ind.K = A.Cols() if ind.K != B.Cols() { return onError("dimensions of A and B do not match") } } else { ind.K = A.Rows() if ind.K != B.Rows() { return onError("dimensions of A and B do not match") } } } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.K > 0 { if (pars.Trans == linalg.PNoTrans && ind.LDa < max(1, ind.N)) || (pars.Trans != linalg.PNoTrans && ind.LDa < max(1, ind.K)) { return onError("inconsistent ldA") } sizeA := A.NumElements() if (pars.Trans == linalg.PNoTrans && sizeA < ind.OffsetA+(ind.K-1)*arows+ind.N) || (pars.TransA != linalg.PNoTrans && sizeA < ind.OffsetA+(ind.N-1)*arows+ind.K) { return onError("sizeA") } } if ind.OffsetB < 0 { return onError("offsetB illegal, <0") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.K > 0 { if (pars.Trans == linalg.PNoTrans && ind.LDb < max(1, ind.N)) || (pars.Trans != linalg.PNoTrans && ind.LDb < max(1, ind.K)) { return onError("ldB") } sizeB := B.NumElements() if (pars.Trans == linalg.PNoTrans && sizeB < ind.OffsetB+(ind.K-1)*brows+ind.N) || (pars.Trans != linalg.PNoTrans && sizeB < ind.OffsetB+(ind.N-1)*brows+ind.K) { return onError("sizeB") } } if ind.OffsetC < 0 { return onError("offsetC illegal, <0") } if ind.LDc == 0 { ind.LDc = max(1, C.LeadingIndex()) crows = max(1, C.Rows()) } if ind.LDc < max(1, ind.N) { return onError("ldC") } sizeC := C.NumElements() if sizeC < ind.OffsetC+(ind.N-1)*crows+ind.N { return onError("sizeC") } } err = nil return }
func check_level2_func(ind *linalg.IndexOpts, fn funcNum, X, Y, A matrix.Matrix, pars *linalg.Parameters) error { if ind.IncX <= 0 { return onError("incX") } if ind.IncY <= 0 { return onError("incY") } sizeA := A.NumElements() arows := ind.LDa switch fn { case fgemv: // general matrix if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.OffsetA < 0 { return onError("offsetA") } if ind.N > 0 && ind.M > 0 && sizeA < ind.OffsetA+(ind.N-1)*arows+ind.M { return onError("sizeA") } if ind.OffsetX < 0 { return onError("offsetX") } if ind.OffsetY < 0 { return onError("offsetY") } sizeX := X.NumElements() sizeY := Y.NumElements() if pars.Trans == linalg.PNoTrans { if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return onError("sizeX") } if ind.M > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 { return onError("sizeY") } } else { if ind.M > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 { return onError("sizeX") } if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return onError("sizeY") } } case fger: if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.M == 0 || ind.N == 0 { return nil } if ind.M > 0 && ind.N > 0 { if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return onError("ldA") } if ind.OffsetA < 0 { return onError("offsetA") } if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.M { return onError("sizeA") } if ind.OffsetX < 0 { return onError("offsetX") } if ind.OffsetY < 0 { return onError("offsetY") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 { return onError("sizeX") } sizeY := Y.NumElements() if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return onError("sizeY") } } case fgbmv: // general banded if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.Kl < 0 { return onError("kl") } if ind.Ku < 0 { ind.Ku = A.Rows() - 1 - ind.Kl } if ind.Ku < 0 { return onError("ku") } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < ind.Kl+ind.Ku+1 { return onError("ldA") } if ind.OffsetA < 0 { return onError("offsetA") } sizeA := A.NumElements() if ind.N > 0 && ind.M > 0 && sizeA < ind.OffsetA+(ind.N-1)*arows+ind.Kl+ind.Ku+1 { return onError("sizeA") } if ind.OffsetX < 0 { return onError("offsetX") } if ind.OffsetY < 0 { return onError("offsetY") } sizeX := X.NumElements() sizeY := Y.NumElements() if pars.Trans == linalg.PNoTrans { if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return onError("sizeX") } if ind.N > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 { return onError("sizeY") } } else { if ind.N > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 { return onError("sizeX") } if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return onError("sizeY") } } case ftrmv, ftrsv: // ftrmv = triangular // ftrsv = triangular solve if ind.N < 0 { if A.Rows() != A.Cols() { return onError("A not square") } ind.N = A.Rows() } if ind.N > 0 { if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("ldA") } if ind.OffsetA < 0 { return onError("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("sizeA") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return onError("sizeX") } } case ftbmv, ftbsv, fsbmv: // ftbmv = triangular banded // ftbsv = triangular banded solve // fsbmv = symmetric banded product arows := ind.LDa if ind.N < 0 { ind.N = A.Rows() } if ind.N > 0 { if ind.K < 0 { ind.K = max(0, A.Rows()-1) } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < ind.K+1 { return onError("ldA") } if ind.OffsetA < 0 { return onError("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.K+1 { return onError("sizeA") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return onError("sizeX") } if Y != nil { sizeY := Y.NumElements() if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return onError("sizeY") } } } case fsymv, fsyr, fsyr2: // fsymv = symmetric product // fsyr = symmetric rank update // fsyr2 = symmetric rank-2 update if ind.N < 0 { if A.Rows() != A.Cols() { return onError("A not square") } ind.N = A.Rows() } arows := ind.LDa if ind.N > 0 { if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("ldA") } if ind.OffsetA < 0 { return onError("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("sizeA") } if ind.OffsetX < 0 { return onError("offsetX") } sizeX := X.NumElements() if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 { return onError("sizeX") } if Y != nil { if ind.OffsetY < 0 { return onError("offsetY") } sizeY := Y.NumElements() if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 { return onError("sizeY") } } } case fspr, fdspr2, ftpsv, fspmv, ftpmv: // ftpsv = triangular packed solve // fspmv = symmetric packed product // ftpmv = triangular packed } return nil }
/* Product with a real orthogonal matrix. PURPOSE Computes C := Q*C if side = PLeft and trans = PNoTrans C := Q^T*C if side = PLeft and trans = PTrans C := C*Q if side = PRight and trans = PNoTrans C := C*Q^T if side = PRight and trans = PTrans C is m by n and Q is a square orthogonal matrix computed by geqrf. Q is defined as a product of k elementary reflectors, stored as the first k columns of A and the first k entries of tau. ARGUMENTS A float matrix tau float matrix of length at least k C float matrix OPTIONS side PLeft or PRight trans PNoTrans or PTrans m integer. If negative, the default value is used. n integer. If negative, the default value is used. k integer. k <= m if side = PRight and k <= n if side = PLeft. If negative, the default value is used. ldA nonnegative integer. ldA >= max(1,m) if side = PLeft and ldA >= max(1,n) if side = PRight. If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer */ func Ormqr(A, tau, C matrix.Matrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) arows := ind.LDa crows := ind.LDc if ind.N < 0 { ind.N = C.Cols() } if ind.M < 0 { ind.M = C.Rows() } if ind.K < 0 { ind.K = tau.NumElements() } if ind.N == 0 || ind.M == 0 || ind.K == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDc == 0 { ind.LDc = max(1, C.LeadingIndex()) crows = max(1, C.Rows()) } switch pars.Side { case linalg.PLeft: if ind.K > ind.M { onError("Ormqf: K") } if ind.LDa < max(1, ind.M) { return onError("Ormqf: ldA") } case linalg.PRight: if ind.K > ind.N { onError("Ormqf: K") } if ind.LDa < max(1, ind.N) { return onError("Ormqf: ldA") } } if ind.OffsetA < 0 { return onError("Ormqf: offsetA") } if A.NumElements() < ind.OffsetA+ind.K*arows { return onError("Ormqf: sizeA") } if ind.OffsetC < 0 { return onError("Ormqf: offsetC") } if C.NumElements() < ind.OffsetC+(ind.N-1)*crows+ind.M { return onError("Ormqf: sizeC") } if tau.NumElements() < ind.K { return onError("Ormqf: sizeTau") } if !matrix.EqualTypes(A, C, tau) { return onError("Ormqf: arguments not of same type") } info := -1 side := linalg.ParamString(pars.Side) trans := linalg.ParamString(pars.Trans) switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() Ca := C.(*matrix.FloatMatrix).FloatArray() taua := tau.(*matrix.FloatMatrix).FloatArray() info = dormqr(side, trans, ind.M, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa, taua, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: return onError("Ormqf: complex not implemented yet") } if info != 0 { return onError(fmt.Sprintf("Ormqr: lapack error %d", info)) } return nil }
/* Solves a real or complex symmetric set of linear equations, given the LDL^T factorization computed by sytrf() or sysv(). PURPOSE Solves A*X = B where A is real or complex symmetric and n by n, and B is n by nrhs. On entry, A and ipiv contain the factorization of A as returned by Sytrf() or Sysv(). On exit, B is replaced by the solution. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. ipiv int vector OPTIONS uplo PLower or PUpper n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB nonnegative integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Sytrs(A, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) arows := ind.LDa brows := ind.LDb if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return onError("Sytrs: A not square") } } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("Sytrs: ldA") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return onError("Sytrs: ldB") } if ind.OffsetA < 0 { return onError("Sytrs: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Sytrs: sizeA") } if ind.OffsetB < 0 { return onError("Sytrs: offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*brows+ind.N { return onError("Sytrs: sizeB") } if ipiv != nil && len(ipiv) < ind.N { return onError("Sytrs: size ipiv") } if !matrix.EqualTypes(A, B) { return onError("Sytrs: arguments not of same type") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() Ba := B.(*matrix.FloatMatrix).FloatArray() uplo := linalg.ParamString(pars.Uplo) info = dsytrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return onError("Sytrs: complex not yet implemented") } if info != 0 { return onError(fmt.Sprintf("Sytrs lapack error: %d", info)) } return nil }
func checkPosv(ind *linalg.IndexOpts, A, B matrix.Matrix) error { arows := ind.LDa brows := ind.LDb if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("Posv: lda") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return onError("Posv: ldb") } if ind.OffsetA < 0 { return onError("Posv: offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Posv: sizeA") } if ind.OffsetB < 0 { return onError("Posv: offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*brows+ind.N { return onError("Posv: sizeB") } return nil }
func checkGesvd(ind *linalg.IndexOpts, pars *linalg.Parameters, A, S, U, Vt matrix.Matrix) error { arows := ind.LDa if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.M == 0 || ind.N == 0 { return nil } if pars.Jobu == linalg.PJobO && pars.Jobvt == linalg.PJobO { return onError("Gesvd: jobu and jobvt cannot both have value PJobO") } if pars.Jobu == linalg.PJobAll || pars.Jobu == linalg.PJobS { if U == nil { return onError("Gesvd: missing matrix U") } if ind.LDu == 0 { ind.LDu = max(1, U.LeadingIndex()) } if ind.LDu < max(1, ind.M) { return onError("Gesvd: ldU") } } else { if ind.LDu == 0 { ind.LDu = 1 } if ind.LDu < 1 { return onError("Gesvd: ldU") } } if pars.Jobvt == linalg.PJobAll || pars.Jobvt == linalg.PJobS { if Vt == nil { return onError("Gesvd: missing matrix Vt") } if ind.LDvt == 0 { ind.LDvt = max(1, Vt.LeadingIndex()) } if pars.Jobvt == linalg.PJobAll && ind.LDvt < max(1, ind.N) { return onError("Gesvd: ldVt") } else if pars.Jobvt != linalg.PJobAll && ind.LDvt < max(1, min(ind.M, ind.N)) { return onError("Gesvd: ldVt") } } else { if ind.LDvt == 0 { ind.LDvt = 1 } if ind.LDvt < 1 { return onError("Gesvd: ldVt") } } if ind.OffsetA < 0 { return onError("Gesvd: offsetA") } sizeA := A.NumElements() if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.M { return onError("Gesvd: sizeA") } if ind.OffsetS < 0 { return onError("Gesvd: offsetS") } sizeS := S.NumElements() if sizeS < ind.OffsetS+min(ind.M, ind.N) { return onError("Gesvd: sizeA") } /* if U != nil { if ind.OffsetU < 0 { return onError("Gesvd: OffsetU") } sizeU := U.NumElements() if pars.Jobu == linalg.PJobAll && sizeU < ind.LDu*(ind.M-1) { return onError("Gesvd: sizeU") } else if pars.Jobu == linalg.PJobS && sizeU < ind.LDu*(min(ind.M,ind.N)-1) { return onError("Gesvd: sizeU") } } if Vt != nil { if ind.OffsetVt < 0 { return onError("Gesvd: OffsetVt") } sizeVt := Vt.NumElements() if pars.Jobvt == linalg.PJobAll && sizeVt < ind.N { return onError("Gesvd: sizeVt") } else if pars.Jobvt == linalg.PJobS && sizeVt < min(ind.M, ind.N) { return onError("Gesvd: sizeVt") } } */ return nil }
func SyevxFloat(A, W, Z matrix.Matrix, abstol float64, vlimit []float64, ilimit []int, opts ...linalg.Option) error { var vl, vu float64 var il, iu int pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) arows := ind.LDa if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return onError("Syevr: A not square") } } // Check indexes if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, A.Rows()) { return onError("Syevr: lda") } if pars.Range == linalg.PRangeValue { if vlimit == nil { return onError("Syevx: vlimit is nil") } vl = vlimit[0] vu = vlimit[1] if vl >= vu { return onError("Syevx: must be: vl < vu") } } else if pars.Range == linalg.PRangeInt { if ilimit == nil { return onError("Syevx: ilimit is nil") } il = ilimit[0] iu = ilimit[1] if il < 1 || il > iu || iu > ind.N { return onError("Syevx: must be:1 <= il <= iu <= N") } } if pars.Jobz == linalg.PJobValue { if Z == nil { return onError("Syevx: Z is nil") } if ind.LDz == 0 { ind.LDz = max(1, Z.LeadingIndex()) } if ind.LDz < max(1, ind.N) { return onError("Syevx: ldz") } } else { if ind.LDz == 0 { ind.LDz = 1 } if ind.LDz < 1 { return onError("Syevx: ldz") } } if ind.OffsetA < 0 { return onError("Syevx: OffsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Syevx: sizeA") } if ind.OffsetW < 0 { return onError("Syevx: OffsetW") } sizeW := W.NumElements() if sizeW < ind.OffsetW+ind.N { return onError("Syevx: sizeW") } if pars.Jobz == linalg.PJobValue { if ind.OffsetZ < 0 { return onError("Syevx: OffsetW") } zrows := max(1, Z.Rows()) minZ := ind.OffsetZ + (ind.N-1)*zrows + ind.N if pars.Range == linalg.PRangeInt { minZ = ind.OffsetZ + (iu-il)*zrows + ind.N } if Z.NumElements() < minZ { return onError("Syevx: sizeZ") } } Aa := A.(*matrix.FloatMatrix).FloatArray() Wa := W.(*matrix.FloatMatrix).FloatArray() var Za []float64 if pars.Jobz == linalg.PJobValue { Za = Z.(*matrix.FloatMatrix).FloatArray() } else { Za = nil } jobz := linalg.ParamString(pars.Jobz) rnge := linalg.ParamString(pars.Range) uplo := linalg.ParamString(pars.Uplo) info := dsyevx(jobz, rnge, uplo, ind.N, Aa[ind.OffsetA:], ind.LDa, vl, vu, il, iu, ind.M, Wa[ind.OffsetW:], Za, ind.LDz) if info != 0 { return onError(fmt.Sprintf("Syevx: call failed %d", info)) } return nil }
func check_level1_func(ind *linalg.IndexOpts, fn funcNum, X, Y matrix.Matrix) error { nX, nY := 0, 0 // this is adapted from cvxopt:blas.c python blas interface switch fn { case fnrm2, fasum, fiamax, fscal, fset: if ind.IncX <= 0 { return onError("incX illegal, <=0") } if ind.OffsetX < 0 { return onError("offsetX illegal, <0") } sizeX := X.NumElements() if sizeX >= ind.OffsetX+1 { // calculate default size for N based on X size nX = 1 + (sizeX-ind.OffsetX-1)/ind.IncX } if sizeX < ind.OffsetX+1+(ind.Nx-1)*abs(ind.IncX) { return onError("X size error") } if ind.Nx < 0 { ind.Nx = nX } case fdot, fswap, fcopy, faxpy, faxpby: // vector X if ind.IncX <= 0 { return onError("incX illegal, <=0") } if ind.OffsetX < 0 { return onError("offsetX illegal, <0") } sizeX := X.NumElements() if sizeX >= ind.OffsetX+1 { // calculate default size for N based on X size nX = 1 + (sizeX-ind.OffsetX-1)/ind.IncX } if sizeX < ind.OffsetX+1+(ind.Nx-1)*abs(ind.IncX) { return onError("X size error") } if ind.Nx < 0 { ind.Nx = nX } // vector Y if ind.IncY <= 0 { return onError("incY illegal, <=0") } if ind.OffsetY < 0 { return onError("offsetY illegal, <0") } sizeY := Y.NumElements() if sizeY >= ind.OffsetY+1 { // calculate default size for N based on Y size nY = 1 + (sizeY-ind.OffsetY-1)/ind.IncY } if ind.Ny < 0 { ind.Ny = nY } if sizeY < ind.OffsetY+1+(ind.Ny-1)*abs(ind.IncY) { //fmt.Printf("sizeY=%d, inds: %#v\n", sizeY, ind) return onError("Y size error") } case frotg, frotmg, frot, frotm: } return nil }
/* Solves a general real or complex set of linear equations. PURPOSE Solves A*X=B with A m by n real or complex. ARGUMENTS. A float or complex matrix B float or complex matrix. Must have the same type as A. OPTIONS: trans m nonnegative integer. If negative, the default value is used. n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. */ func Gels(A, B matrix.Matrix, opts ...linalg.Option) error { pars, _ := linalg.GetParameters(opts...) ind := linalg.GetIndexOpts(opts...) arows := ind.LDa brows := ind.LDb if ind.M < 0 { ind.M = A.Rows() } if ind.N < 0 { ind.N = A.Cols() } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.M == 0 || ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return onError("Gesv: ldA") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.LDb < max(ind.M, ind.N) { return onError("Gesv: ldB") } if !matrix.EqualTypes(A, B) { return onError("Gesv: arguments not of same type") } _, _ = arows, brows // todo!! something info := -1 trans := linalg.ParamString(pars.Trans) switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() Ba := B.(*matrix.FloatMatrix).FloatArray() info = dgels(trans, ind.M, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: Aa := A.(*matrix.ComplexMatrix).ComplexArray() Ba := B.(*matrix.ComplexMatrix).ComplexArray() info = zgels(trans, ind.M, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) } if info != 0 { return onError(fmt.Sprintf("Gels: lapack error: %d", info)) } return nil }
/* QR factorization. PURPOSE QR factorization of an m by n real or complex matrix A: A = Q*R = [Q1 Q2] * [R1; 0] if m >= n A = Q*R = Q * [R1 R2] if m <= n, where Q is m by m and orthogonal/unitary and R is m by n with R1 upper triangular. On exit, R is stored in the upper triangular part of A. Q is stored as a product of k=min(m,n) elementary reflectors. The parameters of the reflectors are stored in the first k entries of tau and in the lower triangular part of the first k columns of A. ARGUMENTS A float or complex matrix tau float or complex matrix of length at least min(m,n). Must have the same type as A. m integer. If negative, the default value is used. n integer. If negative, the default value is used. ldA nonnegative integer. ldA >= max(1,m). If zero, the default value is used. offsetA nonnegative integer */ func Geqrf(A, tau matrix.Matrix, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) arows := ind.LDa if ind.N < 0 { ind.N = A.Cols() } if ind.M < 0 { ind.M = A.Rows() } if ind.N == 0 || ind.M == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return onError("Geqrf: ldA") } if ind.OffsetA < 0 { return onError("Geqrf: offsetA") } if A.NumElements() < ind.OffsetA+ind.K*arows { return onError("Geqrf: sizeA") } if tau.NumElements() < min(ind.M, ind.N) { return onError("Geqrf: sizeTau") } if !matrix.EqualTypes(A, tau) { return onError("Geqrf: arguments not of same type") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() taua := tau.(*matrix.FloatMatrix).FloatArray() info = dgeqrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, taua) case *matrix.ComplexMatrix: return onError("Geqrf: complex not yet implemented") } if info != 0 { return onError(fmt.Sprintf("Geqrf lapack error: %d", info)) } return nil }
/* Solves a general real or complex set of linear equations. PURPOSE Solves A*X=B with A n by n real or complex. If ipiv is provided, then on exit A is overwritten with the details of the LU factorization, and ipiv contains the permutation matrix. If ipiv is not provided, then gesv() does not return the factorization and does not modify A. On exit B is replaced with the solution X. ARGUMENTS. A float or complex matrix B float or complex matrix. Must have the same type as A. ipiv int vector of length at least n OPTIONS: n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetA nonnegative integer; */ func Gesv(A, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { //pars, err := linalg.GetParameters(opts...) ind := linalg.GetIndexOpts(opts...) arows := ind.LDa brows := ind.LDb if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return onError("Gesv: A not square") } } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.LeadingIndex()) arows = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return onError("Gesv: ldA") } if ind.LDb == 0 { ind.LDb = max(1, B.LeadingIndex()) brows = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return onError("Gesv: ldB") } if ind.OffsetA < 0 { return onError("Gesv: offsetA") } if ind.OffsetB < 0 { return onError("Gesv: offsetB") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*arows+ind.N { return onError("Gesv: sizeA") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*brows+ind.N { return onError("Gesv: sizeB") } if ipiv != nil && len(ipiv) < ind.N { return onError("Gesv: size ipiv") } if !matrix.EqualTypes(A, B) { return onError("Gesv: arguments not of same type") } info := -1 if ipiv == nil { ipiv = make([]int32, ind.N) // Do not overwrite A. A = A.MakeCopy() } switch A.(type) { case *matrix.FloatMatrix: Aa := A.(*matrix.FloatMatrix).FloatArray() Aa = Aa[ind.OffsetA:] // Ensure there are sufficient elements in A. Aa = Aa[:ind.LDa*ind.LDb] Ba := B.(*matrix.FloatMatrix).FloatArray() Ba = Ba[ind.OffsetB:] info = dgesv(ind.N, ind.Nrhs, Aa, ind.LDa, ipiv, Ba, ind.LDb) case *matrix.ComplexMatrix: Aa := A.(*matrix.ComplexMatrix).ComplexArray() Aa = Aa[ind.OffsetA:] // Ensure there are sufficient elements in A. Aa = Aa[:ind.LDa*ind.LDb] Ba := B.(*matrix.ComplexMatrix).ComplexArray() Ba = Ba[ind.OffsetB:] info = zgesv(ind.N, ind.Nrhs, Aa, ind.LDa, ipiv, Ba, ind.LDb) } if info != 0 { return onError(fmt.Sprintf("Gesv: lapack error: %d", info)) } return nil }