Example #1
0
func Example_gp() {
	// create initial population
	gp.SetSeed(1)
	pset := gp.CreatePrimSet(1, "x")
	pset.Add(num.Add, num.Sub, num.Mul, num.Div, num.Neg, num.V(0), num.V(1))
	generator := gp.GenFull(pset, 1, 3)
	pop, evals := gp.CreatePopulation(500, generator).Evaluate(eval{}, 1)
	best := pop.Best()
	fmt.Printf("gen=%d evals=%d fit=%.4f\n", 0, evals, best.Fitness)

	// setup genetic variations
	tournament := gp.Tournament(3)
	mutate := gp.MutUniform(gp.GenGrow(pset, 0, 2))
	crossover := gp.CxOnePoint()

	// loop till reach target fitness or exceed no. of generations
	for gen := 1; gen <= 40 && best.Fitness < 1; gen++ {
		offspring := tournament.Select(pop, len(pop))
		pop, evals = gp.VarAnd(offspring, crossover, mutate, 0.5, 0.2).Evaluate(eval{}, 1)
		best = pop.Best()
		fmt.Printf("gen=%d evals=%d fit=%.4f\n", gen, evals, best.Fitness)
	}
	fmt.Println(best.Code.Format())
	// Output:
	// set random seed: 1
	// gen=0 evals=500 fit=0.1203
	// gen=1 evals=299 fit=0.3299
	// gen=2 evals=286 fit=0.6633
	// gen=3 evals=265 fit=0.6633
	// gen=4 evals=280 fit=0.6633
	// gen=5 evals=291 fit=0.6633
	// gen=6 evals=302 fit=0.6633
	// gen=7 evals=294 fit=1.0000
	// (x + (((x / 1) - ((x / 1) * -(((x * x) + x)))) * (1 * x)))
}
Example #2
0
// build and run model
func main() {
	// get options
	var maxSize, maxDepth int
	var trailFile string
	flag.IntVar(&maxSize, "size", 0, "maximum tree size - zero for none")
	flag.IntVar(&maxDepth, "depth", 0, "maximum tree depth - zero for none")
	flag.StringVar(&trailFile, "trail", "santafe_trail.txt", "trail definition file")
	opts := util.DefaultOptions
	util.ParseFlags(&opts)

	// create primitive set
	config := readTrail(trailFile)
	pset := gp.CreatePrimSet(0)
	pset.Add(progN{&gp.BaseFunc{"prog2", 2}})
	pset.Add(progN{&gp.BaseFunc{"prog3", 3}})
	pset.Add(ifFood{&gp.BaseFunc{"if_food", 2}})
	pset.Add(Terminal("left", turn(-1)))
	pset.Add(Terminal("right", turn(1)))
	pset.Add(Terminal("step", step))

	// setup model
	problem := &gp.Model{
		PrimitiveSet:  pset,
		Generator:     gp.GenFull(pset, 1, 2),
		PopSize:       opts.PopSize,
		Fitness:       fitnessFunc(config),
		Offspring:     gp.Tournament(opts.TournSize),
		Mutate:        gp.MutUniform(gp.GenFull(pset, 0, 2)),
		MutateProb:    opts.MutateProb,
		Crossover:     gp.CxOnePoint(),
		CrossoverProb: opts.CrossoverProb,
		Threads:       opts.Threads,
	}
	if maxDepth > 0 {
		problem.AddDecorator(gp.DepthLimit(maxDepth))
	}
	if maxSize > 0 {
		problem.AddDecorator(gp.SizeLimit(maxSize))
	}
	problem.PrintParams("== Artificial ant ==")

	logger := stats.NewLogger(opts.MaxGen, opts.TargetFitness)
	if opts.Verbose {
		logger.OnDone = func(best *gp.Individual) {
			ant := run(config, best.Code)
			fmt.Println(ant.grid)
		}
	}

	// run
	if opts.Plot {
		logger.RegisterSVGPlot("best", createPlot(config, 500, 10))
		stats.MainLoop(problem, logger, ":8080", "../web")
	} else {
		fmt.Println()
		logger.PrintStats = true
		logger.PrintBest = opts.Verbose
		problem.Run(logger)
	}
}
Example #3
0
func ExampleModel() {
	gp.SetSeed(1)
	pset := gp.CreatePrimSet(1, "x")
	pset.Add(num.Add, num.Sub, num.Mul, num.Div, num.Neg, num.V(0), num.V(1))

	problem := gp.Model{
		PrimitiveSet:  pset,
		Generator:     gp.GenFull(pset, 1, 3),
		PopSize:       500,
		Fitness:       getFitness,
		Offspring:     gp.Tournament(3),
		Mutate:        gp.MutUniform(gp.GenGrow(pset, 0, 2)),
		MutateProb:    0.2,
		Crossover:     gp.CxOnePoint(),
		CrossoverProb: 0.5,
		Threads:       1,
	}

	logger := &stats.Logger{MaxGen: 20, TargetFitness: 0.99, PrintStats: true}
	problem.Run(logger)

	// Output:
	// set random seed: 1
	// Gen      Evals    FitMax   FitAvg   FitStd   SizeAvg  SizeMax  DepthAvg DepthMax
	// 0        500      0.12     0.025    0.014    6.85     15       1.96     3
	// 1        299      0.33     0.0344   0.0204   6.33     27       1.93     6
	// 2        286      0.663    0.0469   0.0448   6.26     27       1.9      7
	// 3        265      0.663    0.0598   0.0683   6.58     34       2.06     9
	// 4        280      0.663    0.0772   0.088    7.51     39       2.39     9
	// 5        291      0.663    0.0918   0.1      8.92     32       2.82     8
	// 6        302      0.663    0.117    0.133    10.3     35       3.2      10
	// 7        294      1        0.152    0.17     11.1     35       3.48     10
	// ** SUCCESS **
}
Example #4
0
// main GP routine
func main() {
	opts := util.DefaultOptions
	util.ParseFlags(&opts)

	pset := gp.CreatePrimSet(PARITY_FANIN)
	pset.Add(boolean.And, boolean.Or, boolean.Xor, boolean.Not, boolean.True, boolean.False)

	problem := &gp.Model{
		PrimitiveSet:  pset,
		Generator:     gp.GenFull(pset, 3, 5),
		PopSize:       opts.PopSize,
		Fitness:       getFitnessFunc(),
		Offspring:     gp.Tournament(opts.TournSize),
		Mutate:        gp.MutUniform(gp.GenGrow(pset, 0, 2)),
		MutateProb:    opts.MutateProb,
		Crossover:     gp.CxOnePoint(),
		CrossoverProb: opts.CrossoverProb,
		Threads:       opts.Threads,
	}
	problem.PrintParams("== Even parity problem for", PARITY_FANIN, "inputs ==")

	logger := stats.NewLogger(opts.MaxGen, opts.TargetFitness)
	if opts.Plot {
		stats.MainLoop(problem, logger, ":8080", "../web")
	} else {
		fmt.Println()
		logger.PrintStats = true
		logger.PrintBest = opts.Verbose
		problem.Run(logger)
	}
}
Example #5
0
// main GP routine
func main() {
	// get options
	var maxSize, maxDepth int
	var dataFile string
	flag.IntVar(&maxSize, "size", 0, "maximum tree size - zero for none")
	flag.IntVar(&maxDepth, "depth", 0, "maximum tree depth - zero for none")
	flag.StringVar(&dataFile, "trainset", "poly.dat", "file with training function")
	opts := util.DefaultOptions
	util.ParseFlags(&opts)

	// create primitive set
	ercMin, ercMax, trainSet := getData(dataFile)
	pset := gp.CreatePrimSet(1, "x")
	pset.Add(num.Add, num.Sub, num.Mul, num.Div)
	pset.Add(num.Ephemeral("ERC", ercGen(ercMin, ercMax)))

	// setup model
	problem := &gp.Model{
		PrimitiveSet:  pset,
		Generator:     gp.GenRamped(pset, 1, 3),
		PopSize:       opts.PopSize,
		Fitness:       fitnessFunc(trainSet),
		Offspring:     gp.Tournament(opts.TournSize),
		Mutate:        gp.MutUniform(gp.GenGrow(pset, 0, 2)),
		MutateProb:    opts.MutateProb,
		Crossover:     gp.CxOnePoint(),
		CrossoverProb: opts.CrossoverProb,
		Threads:       opts.Threads,
	}
	if maxDepth > 0 {
		problem.AddDecorator(gp.DepthLimit(maxDepth))
	}
	if maxSize > 0 {
		problem.AddDecorator(gp.SizeLimit(maxSize))
	}
	problem.PrintParams("== GP Symbolic Regression for ", dataFile, "==")

	// run
	logger := stats.NewLogger(opts.MaxGen, opts.TargetFitness)
	if opts.Plot {
		gp.GraphDPI = "60"
		logger.RegisterPlot("graph", plotTarget(trainSet), plotBest(trainSet))
		stats.MainLoop(problem, logger, ":8080", "../web")
	} else {
		fmt.Println()
		logger.PrintStats = true
		logger.PrintBest = opts.Verbose
		problem.Run(logger)
	}
}
Example #6
0
// build and run model
func main() {
	// get options
	var maxSize, maxDepth int
	var configFile string
	flag.IntVar(&maxSize, "size", 0, "maximum tree size - zero for none")
	flag.IntVar(&maxDepth, "depth", 0, "maximum tree depth - zero for none")
	flag.StringVar(&configFile, "config", "desert.txt", "grid definition file")
	opts := util.DefaultOptions
	util.ParseFlags(&opts)

	// create primitive set
	grid := readGrid(configFile)
	pset := gp.CreatePrimSet(0)
	pset.Add(Terminal("x", func(ant *Ant) int { return ant.col }))
	pset.Add(Terminal("y", func(ant *Ant) int { return ant.row }))
	pset.Add(Terminal("carrying", func(ant *Ant) int { return ant.carrying }))
	pset.Add(Terminal("color", func(ant *Ant) int { return ant.grid.cells[ant.row][ant.col].color }))
	pset.Add(Terminal("go-n", move(0)))
	pset.Add(Terminal("go-e", move(1)))
	pset.Add(Terminal("go-s", move(2)))
	pset.Add(Terminal("go-w", move(3)))
	pset.Add(Terminal("go-rand", func(ant *Ant) int { return move(ant.grid.rng.Intn(4))(ant) }))
	pset.Add(Terminal("pickup", pickUp))
	pset.Add(IfElse("iflte", 4, ifLessThanOrEqual))
	pset.Add(IfElse("ifltz", 3, ifLessThanZero))
	pset.Add(IfElse("ifdrop", 2, ifDrop))

	// setup model
	problem := &gp.Model{
		PrimitiveSet:  pset,
		Generator:     gp.GenFull(pset, 1, 2),
		PopSize:       opts.PopSize,
		Fitness:       fitnessFunc(grid),
		Offspring:     gp.Tournament(opts.TournSize),
		Mutate:        gp.MutUniform(gp.GenFull(pset, 0, 2)),
		MutateProb:    opts.MutateProb,
		Crossover:     gp.CxOnePoint(),
		CrossoverProb: opts.CrossoverProb,
		Threads:       opts.Threads,
	}
	if maxDepth > 0 {
		problem.AddDecorator(gp.DepthLimit(maxDepth))
	}
	if maxSize > 0 {
		problem.AddDecorator(gp.SizeLimit(maxSize))
	}
	problem.PrintParams("== Artificial ant ==")

	logger := stats.NewLogger(opts.MaxGen, opts.TargetFitness)
	if opts.Verbose {
		logger.OnDone = func(best *gp.Individual) {
			g, _ := run(grid, best.Code)
			fmt.Println(g)
		}
	}

	// run
	if opts.Plot {
		logger.RegisterSVGPlot("best", createPlot(grid, 500, 40))
		stats.MainLoop(problem, logger, ":8080", "../web")
	} else {
		fmt.Println()
		logger.PrintStats = true
		logger.PrintBest = opts.Verbose
		problem.Run(logger)
	}
}