func MultiScale(im image.Image, tmpls map[string]*detect.FeatTmpl, opts detect.MultiScaleOpts) ([]Det, error) { if len(tmpls) == 0 { return nil, nil } scales := imgpyr.Scales(im.Bounds().Size(), minDims(tmpls), opts.MaxScale, opts.PyrStep).Elems() ims := imgpyr.NewGenerator(im, scales, opts.Interp) pyr := featpyr.NewGenerator(ims, opts.Transform, opts.Pad) var dets []Det l, err := pyr.First() if err != nil { return nil, err } for l != nil { for key, tmpl := range tmpls { pts := detect.Points(l.Feat, tmpl.Image, tmpl.Bias, opts.DetFilter.LocalMax, opts.DetFilter.MinScore) // Convert to scored rectangles in the image. for _, pt := range pts { rect := pyr.ToImageRect(l.Image.Index, pt.Point, tmpl.Interior) dets = append(dets, Det{detect.Det{pt.Score + tmpl.Bias, rect}, key}) } } var err error l, err = pyr.Next(l) if err != nil { return nil, err } } Sort(dets) inds := detect.SuppressIndex(DetSlice(dets), opts.SupprFilter.MaxNum, opts.SupprFilter.Overlap) dets = detsSubset(dets, inds) return dets, nil }
// MultiScale searches an image at multiple scales and performs non-max suppression. // // At each level, the image is rescaled using Interp, // then padded using Pad before calling Transform.Apply(). // The levels are geometrically spaced at intervals of PyrStep. // Detections are filtered using DetFilter and then non-max suppression // is performed using the OverlapFunc test. func MultiScale(im image.Image, scorer slide.Scorer, shape PadRect, opts MultiScaleOpts) ([]Det, MultiScaleDuration, error) { scales := imgpyr.Scales(im.Bounds().Size(), scorer.Size(), opts.MaxScale, opts.PyrStep).Elems() ims := imgpyr.NewGenerator(im, scales, opts.Interp) pyr := featpyr.NewGenerator(ims, opts.Transform, opts.Pad) var dets []Det l, err := pyr.First() if err != nil { return nil, MultiScaleDuration{}, err } var dur MultiScaleDuration for l != nil { t := time.Now() pts, err := Points(l.Feat, scorer, opts.DetFilter.LocalMax, opts.DetFilter.MinScore) if err != nil { return nil, MultiScaleDuration{}, err } dur.Slide += time.Since(t) // Convert to scored rectangles in the image. for _, pt := range pts { rect := pyr.ToImageRect(l.Image.Index, pt.Point, shape.Int) dets = append(dets, Det{pt.Score, rect}) } l, err = pyr.Next(l) if err != nil { return nil, MultiScaleDuration{}, err } } dur.Resize = pyr.DurResize dur.Feat = pyr.DurFeat t := time.Now() Sort(dets) dets = Suppress(dets, opts.SupprFilter.MaxNum, opts.SupprFilter.Overlap) dur.Suppr = time.Since(t) return dets, dur, nil }
func evalImage(tmpl *detect.FeatTmpl, im image.Image, pyrStep float64, hogBin int, opts featpyr.DetectOpts) []detect.Det { // Construct image pyramid. scales := imgpyr.Scales(im.Bounds().Size(), tmpl.Size, pyrStep) pixpyr := imgpyr.New(im, scales) // Construct HOG pyramid. fn := func(rgb *rimg64.Multi) *rimg64.Multi { return hog.HOG(rgb, hog.FGMRConfig(hogBin)) } pyr := featpyr.New(pixpyr, fn, hogBin) // Search feature pyramid. dets := featpyr.Detect(pyr, tmpl, opts) return dets }
// Runs a single detector across a single image and returns results. func detectImage(tmpl *detect.FeatTmpl, im image.Image, margin int, step float64, sbin int, localmax bool, maxiou float64) []detect.Det { // Construct pyramid. // Get range of scales. scales := imgpyr.Scales(im.Bounds().Size(), tmpl.Size, step) // Define feature transform. phi := hog.Transform{hog.FGMRConfig(sbin)} // Define amount and type of padding. pad := feat.Pad{feat.Margin{margin, margin, margin, margin}, imsamp.Continue} pyr := featpyr.NewPad(imgpyr.New(im, scales), phi, pad) // Search feature pyramid. // Options for running detector on each level. detopts := detect.DetFilter{LocalMax: localmax, MinScore: math.Inf(-1)} // Use intersection-over-union criteria for non-max suppression. overlap := func(a, b image.Rectangle) bool { return detect.IOU(a, b) > maxiou } // Options for non-max suppression. suppropts := detect.SupprFilter{MaxNum: 0, Overlap: overlap} dets := detect.Pyramid(pyr, tmpl, detopts, suppropts) return dets }
func main() { var ( sbin = flag.Int("sbin", 4, "Spatial binning parameter to HOG") margin = flag.Int("margin", 0, "Margin to add around images before computing features") step = flag.Float64("pyr-step", 1.1, "Geometric step to use in image pyramid") maxinter = flag.Float64("max-intersect", 0.5, "Maximum overlap of detections. Zero means detections can't overlap at all, one means they can overlap entirely.") localmax = flag.Bool("local-max", true, "Detections cannot score less than a neighbor") ) flag.Usage = usage flag.Parse() if flag.NArg() != 3 { flag.Usage() os.Exit(1) } var ( tmplFile = flag.Arg(0) imFile = flag.Arg(1) detsFile = flag.Arg(2) ) // Load image. im, err := loadImage(imFile) if err != nil { log.Fatal(err) } // Construct pyramid. scales := imgpyr.Scales(im.Bounds().Size(), image.Pt(24, 24), *step) phi := hog.Transform{hog.FGMRConfig(*sbin)} pad := feat.Pad{feat.Margin{*margin, *margin, *margin, *margin}, imsamp.Continue} pyr := featpyr.NewPad(imgpyr.New(im, scales), phi, pad) // Load template. var tmpl *detect.FeatTmpl if err := loadGob(tmplFile, &tmpl); err != nil { log.Fatal(err) } detopts := detect.DetFilter{ LocalMax: *localmax, MinScore: math.Inf(-1), } // Use intersection-over-union criteria for non-max suppression. overlap := func(a, b image.Rectangle) bool { return detect.IOU(a, b) > *maxinter } suppropts := detect.SupprFilter{ MaxNum: 0, Overlap: overlap, } dets := detect.Pyramid(pyr, tmpl, detopts, suppropts) if err := saveJSON(detsFile, dets); err != nil { log.Fatal(err) } for i, det := range dets { r := det.Rect cmd := fmt.Sprintf("rectangle %d,%d %d,%d", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y) fmt.Printf("convert %s -fill none -stroke white -draw '%s' det_%06d.jpg\n", imFile, cmd, i) } }