func (detector *FaceDetector) DetectGlasses(image *opencv.IplImage, roi pixelArea) (leftEyes, rightEyes pixelCoords) { var topFace opencv.Rect var eyes pixelCoords topFace.Init(roi.X(), roi.Y()+int(float64(roi.Height())*0.20), roi.Width(), int(float64(roi.Height())/2)) image.SetROI(topFace) for _, eye := range detector.glassesCascade.DetectObjects(image) { leftEyes = append(leftEyes, pixelCoord{ x: eye.X() + topFaceLeft.X(), y: eye.Y() + topFaceLeft.Y(), width: eye.Width(), height: eye.Height(), }) } fmt.Println(len(leftEyes), " left eyes found") image.SetROI(topFaceRight) for _, eye := range detector.glassesCascade.DetectObjects(image) { rightEyes = append(rightEyes, pixelCoord{ x: eye.X() + topFaceRight.X(), y: eye.Y() + topFaceRight.Y(), width: eye.Width(), height: eye.Height(), }) } fmt.Println(len(rightEyes), " right eyes found") image.ResetROI() return }
func main() { runtime.GOMAXPROCS(runtime.NumCPU()) _, currentfile, _, _ := runtime.Caller(0) cascade := path.Join(path.Dir(currentfile), "haarcascade_frontalface_alt.xml") window := opencv.NewWindowDriver() camera := opencv.NewCameraDriver("tcp://192.168.1.1:5555") ardroneAdaptor := ardrone.NewAdaptor() drone := ardrone.NewDriver(ardroneAdaptor) work := func() { detect := false drone.TakeOff() var image *cv.IplImage camera.On(opencv.Frame, func(data interface{}) { image = data.(*cv.IplImage) if !detect { window.ShowImage(image) } }) drone.On(ardrone.Flying, func(data interface{}) { gobot.After(1*time.Second, func() { drone.Up(0.2) }) gobot.After(2*time.Second, func() { drone.Hover() }) gobot.After(5*time.Second, func() { detect = true gobot.Every(300*time.Millisecond, func() { drone.Hover() i := image faces := opencv.DetectFaces(cascade, i) biggest := 0 var face *cv.Rect for _, f := range faces { if f.Width() > biggest { biggest = f.Width() face = f } } if face != nil { opencv.DrawRectangles(i, []*cv.Rect{face}, 0, 255, 0, 5) centerX := float64(image.Width()) * 0.5 turn := -(float64(face.X()) - centerX) / centerX fmt.Println("turning:", turn) if turn < 0 { drone.Clockwise(math.Abs(turn * 0.4)) } else { drone.CounterClockwise(math.Abs(turn * 0.4)) } } window.ShowImage(i) }) gobot.After(20*time.Second, func() { drone.Land() }) }) }) } robot := gobot.NewRobot("face", []gobot.Connection{ardroneAdaptor}, []gobot.Device{window, camera, drone}, work, ) robot.Start() }
func (s smartcropResizer) smartResize(input image.Image, dstWidth, dstHeight int) (image.Image, error) { if dstWidth < 0 || dstHeight < 0 { return nil, fmt.Errorf("Please specify both width and height for your target image") } scaledInput, scale, err := normalizeInput(input, 1024) if err != nil { return input, err } cvImage := opencv.FromImage(scaledInput) _, err = os.Stat(s.haarcascade) if err != nil { return input, err } cascade := opencv.LoadHaarClassifierCascade(s.haarcascade) faces := cascade.DetectObjects(cvImage) if len(faces) == 0 { return nil, ErrNoFacesFound } var biggestFace *opencv.Rect for _, f := range faces { if biggestFace == nil { biggestFace = f continue } biggestArea := biggestFace.Width() * biggestFace.Height() currentArea := f.Width() * f.Height() if biggestArea < currentArea { biggestFace = f } } log.Printf("Faces found %d\n", len(faces)) if biggestFace == nil { return nil, ErrNoFacesFound } faceArea := biggestFace.Width() * biggestFace.Height() imagePixels := scaledInput.Bounds().Dx() * scaledInput.Bounds().Dy() faceAreaPercentage := float64(faceArea) / float64(imagePixels) if faceAreaPercentage < faceImageTreshold { return nil, fmt.Errorf("face area too small: %.2f.\n", faceAreaPercentage) } if sub, ok := input.(subImager); ok { x := int(float64(biggestFace.X()) * scale) y := int(float64(biggestFace.Y()) * scale) width := int(float64(biggestFace.Width()) * scale) height := int(float64(biggestFace.Height()) * scale) facePoint := image.Pt(x, y) target := image.Rect(0, 0, int(float64(dstWidth)*scale), int(float64(dstHeight)*scale)) r := image.Rect(0, 0, x+width, y+height).Add(facePoint) for !target.In(r) && r.Min.X > 0 && r.Min.Y > 0 { r = image.Rect(r.Min.X-1, r.Min.Y-1, r.Max.X+1, r.Max.Y+1) } cropImage := sub.SubImage(r) return imaging.Thumbnail(cropImage, dstWidth, dstHeight, imaging.Lanczos), nil } return input, err }