// HashMerkleBranches takes two hashes, treated as the left and right tree // nodes, and returns the hash of their concatenation. This is a helper // function used to aid in the generation of a merkle tree. func HashMerkleBranches(left *btcwire.ShaHash, right *btcwire.ShaHash) *btcwire.ShaHash { // Concatenate the left and right nodes. var sha [btcwire.HashSize * 2]byte copy(sha[:btcwire.HashSize], left.Bytes()) copy(sha[btcwire.HashSize:], right.Bytes()) // Create a new sha hash from the double sha 256. Ignore the error // here since SetBytes can't fail here due to the fact DoubleSha256 // always returns a []byte of the right size regardless of input. newSha, _ := btcwire.NewShaHash(btcwire.DoubleSha256(sha[:])) return newSha }
// BenchmarkMruInventoryList performs basic benchmarks on the most recently // used inventory handling. func BenchmarkMruInventoryList(b *testing.B) { // Create a bunch of fake inventory vectors to use in benchmarking // the mru inventory code. b.StopTimer() numInvVects := 100000 invVects := make([]*btcwire.InvVect, 0, numInvVects) for i := 0; i < numInvVects; i++ { hashBytes := make([]byte, btcwire.HashSize) rand.Read(hashBytes) hash, _ := btcwire.NewShaHash(hashBytes) iv := btcwire.NewInvVect(btcwire.InvTypeBlock, hash) invVects = append(invVects, iv) } b.StartTimer() // Benchmark the add plus evicition code. limit := 20000 mruInvMap := NewMruInventoryMap(uint(limit)) for i := 0; i < b.N; i++ { mruInvMap.Add(invVects[i%numInvVects]) } }