Example #1
0
// signatureFunc returns a function that calculates the signature for a metric
// based on the provided labels.
func signatureFunc(labels ...clientmodel.LabelName) func(m clientmodel.COWMetric) uint64 {
	if len(labels) == 0 {
		return func(m clientmodel.COWMetric) uint64 {
			m.Delete(clientmodel.MetricNameLabel)
			return uint64(m.Metric.Fingerprint())
		}
	}
	return func(m clientmodel.COWMetric) uint64 {
		return clientmodel.SignatureForLabels(m.Metric, labels)
	}
}
Example #2
0
// vectorBinop evaluates a binary operation between two vector, excluding AND and OR.
func (ev *evaluator) vectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching) Vector {
	if matching.Card == CardManyToMany {
		panic("many-to-many only allowed for AND and OR")
	}
	var (
		result       = Vector{}
		sigf         = signatureFunc(matching.On...)
		resultLabels = append(matching.On, matching.Include...)
	)

	// The control flow below handles one-to-one or many-to-one matching.
	// For one-to-many, swap sidedness and account for the swap when calculating
	// values.
	if matching.Card == CardOneToMany {
		lhs, rhs = rhs, lhs
	}

	// All samples from the rhs hashed by the matching label/values.
	rightSigs := map[uint64]*Sample{}

	// Add all rhs samples to a map so we can easily find matches later.
	for _, rs := range rhs {
		sig := sigf(rs.Metric)
		// The rhs is guaranteed to be the 'one' side. Having multiple samples
		// with the same signature means that the matching is many-to-many.
		if _, found := rightSigs[sig]; found {
			// Many-to-many matching not allowed.
			ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side")
		}
		rightSigs[sig] = rs
	}

	// Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one
	// the value is a set of signatures to detect duplicated result elements.
	matchedSigs := map[uint64]map[uint64]struct{}{}

	// For all lhs samples find a respective rhs sample and perform
	// the binary operation.
	for _, ls := range lhs {
		sig := sigf(ls.Metric)

		rs, found := rightSigs[sig] // Look for a match in the rhs vector.
		if !found {
			continue
		}

		// Account for potentially swapped sidedness.
		vl, vr := ls.Value, rs.Value
		if matching.Card == CardOneToMany {
			vl, vr = vr, vl
		}
		value, keep := vectorElemBinop(op, vl, vr)
		if !keep {
			continue
		}
		metric := resultMetric(ls.Metric, op, resultLabels...)

		insertedSigs, exists := matchedSigs[sig]
		if matching.Card == CardOneToOne {
			if exists {
				ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)")
			}
			matchedSigs[sig] = nil // Set existance to true.
		} else {
			// In many-to-one matching the grouping labels have to ensure a unique metric
			// for the result vector. Check whether those labels have already been added for
			// the same matching labels.
			insertSig := clientmodel.SignatureForLabels(metric.Metric, matching.Include)
			if !exists {
				insertedSigs = map[uint64]struct{}{}
				matchedSigs[sig] = insertedSigs
			} else if _, duplicate := insertedSigs[insertSig]; duplicate {
				ev.errorf("multiple matches for labels: grouping labels must ensure unique matches")
			}
			insertedSigs[insertSig] = struct{}{}
		}

		result = append(result, &Sample{
			Metric:    metric,
			Value:     value,
			Timestamp: ev.Timestamp,
		})
	}
	return result
}
Example #3
0
// aggregation evaluates an aggregation operation on a vector.
func (ev *evaluator) aggregation(op itemType, grouping clientmodel.LabelNames, keepExtra bool, vector Vector) Vector {

	result := map[uint64]*groupedAggregation{}

	for _, sample := range vector {
		groupingKey := clientmodel.SignatureForLabels(sample.Metric.Metric, grouping)

		groupedResult, ok := result[groupingKey]
		// Add a new group if it doesn't exist.
		if !ok {
			var m clientmodel.COWMetric
			if keepExtra {
				m = sample.Metric
				m.Delete(clientmodel.MetricNameLabel)
			} else {
				m = clientmodel.COWMetric{
					Metric: clientmodel.Metric{},
					Copied: true,
				}
				for _, l := range grouping {
					if v, ok := sample.Metric.Metric[l]; ok {
						m.Set(l, v)
					}
				}
			}
			result[groupingKey] = &groupedAggregation{
				labels:           m,
				value:            sample.Value,
				valuesSquaredSum: sample.Value * sample.Value,
				groupCount:       1,
			}
			continue
		}
		// Add the sample to the existing group.
		if keepExtra {
			groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric)
		}

		switch op {
		case itemSum:
			groupedResult.value += sample.Value
		case itemAvg:
			groupedResult.value += sample.Value
			groupedResult.groupCount++
		case itemMax:
			if groupedResult.value < sample.Value {
				groupedResult.value = sample.Value
			}
		case itemMin:
			if groupedResult.value > sample.Value {
				groupedResult.value = sample.Value
			}
		case itemCount:
			groupedResult.groupCount++
		case itemStdvar, itemStddev:
			groupedResult.value += sample.Value
			groupedResult.valuesSquaredSum += sample.Value * sample.Value
			groupedResult.groupCount++
		default:
			panic(fmt.Errorf("expected aggregation operator but got %q", op))
		}
	}

	// Construct the result vector from the aggregated groups.
	resultVector := make(Vector, 0, len(result))

	for _, aggr := range result {
		switch op {
		case itemAvg:
			aggr.value = aggr.value / clientmodel.SampleValue(aggr.groupCount)
		case itemCount:
			aggr.value = clientmodel.SampleValue(aggr.groupCount)
		case itemStdvar:
			avg := float64(aggr.value) / float64(aggr.groupCount)
			aggr.value = clientmodel.SampleValue(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)
		case itemStddev:
			avg := float64(aggr.value) / float64(aggr.groupCount)
			aggr.value = clientmodel.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg))
		default:
			// For other aggregations, we already have the right value.
		}
		sample := &Sample{
			Metric:    aggr.labels,
			Value:     aggr.value,
			Timestamp: ev.Timestamp,
		}
		resultVector = append(resultVector, sample)
	}
	return resultVector
}