func extractSummary(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Summary == nil { continue } timestamp := o.Timestamp if m.TimestampMs != nil { timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } for _, q := range m.Summary.Quantile { lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } // BUG(matt): Update other names to "quantile". lset[model.LabelName(model.QuantileLabel)] = model.LabelValue(fmt.Sprint(q.GetQuantile())) lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) samples = append(samples, &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(q.GetValue()), Timestamp: timestamp, }) } if m.Summary.SampleSum != nil { lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum") samples = append(samples, &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(m.Summary.GetSampleSum()), Timestamp: timestamp, }) } if m.Summary.SampleCount != nil { lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count") samples = append(samples, &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(m.Summary.GetSampleCount()), Timestamp: timestamp, }) } } return samples }
func extractUntyped(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Untyped == nil { continue } lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName()) smpl := &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(m.Untyped.GetValue()), } if m.TimestampMs != nil { smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } else { smpl.Timestamp = o.Timestamp } samples = append(samples, smpl) } return samples }
func TestProtoDecoder(t *testing.T) { var testTime = model.Now() scenarios := []struct { in string expected model.Vector }{ { in: "", }, { in: "\x8f\x01\n\rrequest_count\x12\x12Number of requests\x18\x00\"0\n#\n\x0fsome_label_name\x12\x10some_label_value\x1a\t\t\x00\x00\x00\x00\x00\x00E\xc0\"6\n)\n\x12another_label_name\x12\x13another_label_value\x1a\t\t\x00\x00\x00\x00\x00\x00U@", expected: model.Vector{ &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_count", "some_label_name": "some_label_value", }), Value: -42, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_count", "another_label_name": "another_label_value", }), Value: 84, Timestamp: testTime, }, }, }, { in: "\xb9\x01\n\rrequest_count\x12\x12Number of requests\x18\x02\"O\n#\n\x0fsome_label_name\x12\x10some_label_value\"(\x1a\x12\t\xaeG\xe1z\x14\xae\xef?\x11\x00\x00\x00\x00\x00\x00E\xc0\x1a\x12\t+\x87\x16\xd9\xce\xf7\xef?\x11\x00\x00\x00\x00\x00\x00U\xc0\"A\n)\n\x12another_label_name\x12\x13another_label_value\"\x14\x1a\x12\t\x00\x00\x00\x00\x00\x00\xe0?\x11\x00\x00\x00\x00\x00\x00$@", expected: model.Vector{ &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_count", "some_label_name": "some_label_value", "quantile": "0.99", }), Value: -42, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_count", "some_label_name": "some_label_value", "quantile": "0.999", }), Value: -84, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_count", "another_label_name": "another_label_value", "quantile": "0.5", }), Value: 10, Timestamp: testTime, }, }, }, { in: "\x8d\x01\n\x1drequest_duration_microseconds\x12\x15The response latency.\x18\x04\"S:Q\b\x85\x15\x11\xcd\xcc\xccL\x8f\xcb:A\x1a\v\b{\x11\x00\x00\x00\x00\x00\x00Y@\x1a\f\b\x9c\x03\x11\x00\x00\x00\x00\x00\x00^@\x1a\f\b\xd0\x04\x11\x00\x00\x00\x00\x00\x00b@\x1a\f\b\xf4\v\x11\x9a\x99\x99\x99\x99\x99e@\x1a\f\b\x85\x15\x11\x00\x00\x00\x00\x00\x00\xf0\u007f", expected: model.Vector{ &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_bucket", "le": "100", }), Value: 123, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_bucket", "le": "120", }), Value: 412, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_bucket", "le": "144", }), Value: 592, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_bucket", "le": "172.8", }), Value: 1524, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_bucket", "le": "+Inf", }), Value: 2693, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_sum", }), Value: 1756047.3, Timestamp: testTime, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "request_duration_microseconds_count", }), Value: 2693, Timestamp: testTime, }, }, }, } for _, scenario := range scenarios { dec := &SampleDecoder{ Dec: &protoDecoder{r: strings.NewReader(scenario.in)}, Opts: &DecodeOptions{ Timestamp: testTime, }, } var all model.Vector for { var smpls model.Vector err := dec.Decode(&smpls) if err == io.EOF { break } if err != nil { t.Fatal(err) } all = append(all, smpls...) } sort.Sort(all) sort.Sort(scenario.expected) if !reflect.DeepEqual(all, scenario.expected) { t.Fatalf("output does not match") } } }
func TestTextDecoder(t *testing.T) { var ( ts = model.Now() in = ` # Only a quite simple scenario with two metric families. # More complicated tests of the parser itself can be found in the text package. # TYPE mf2 counter mf2 3 mf1{label="value1"} -3.14 123456 mf1{label="value2"} 42 mf2 4 ` out = model.Vector{ &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "mf1", "label": "value1", }), Value: -3.14, Timestamp: 123456, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "mf1", "label": "value2", }), Value: 42, Timestamp: ts, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "mf2", }), Value: 3, Timestamp: ts, }, &model.Sample{ Metric: model.NewMetric(model.LabelSet{ model.MetricNameLabel: "mf2", }), Value: 4, Timestamp: ts, }, } ) dec := &SampleDecoder{ Dec: &textDecoder{r: strings.NewReader(in)}, Opts: &DecodeOptions{ Timestamp: ts, }, } var all model.Vector for { var smpls model.Vector err := dec.Decode(&smpls) if err == io.EOF { break } if err != nil { t.Fatal(err) } all = append(all, smpls...) } sort.Sort(all) sort.Sort(out) if !reflect.DeepEqual(all, out) { t.Fatalf("output does not match") } }
func extractHistogram(o *DecodeOptions, f *dto.MetricFamily) model.Vector { samples := make(model.Vector, 0, len(f.Metric)) for _, m := range f.Metric { if m.Histogram == nil { continue } timestamp := o.Timestamp if m.TimestampMs != nil { timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000) } infSeen := false for _, q := range m.Histogram.Bucket { lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.LabelName(model.BucketLabel)] = model.LabelValue(fmt.Sprint(q.GetUpperBound())) lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket") if math.IsInf(q.GetUpperBound(), +1) { infSeen = true } samples = append(samples, &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(q.GetCumulativeCount()), Timestamp: timestamp, }) } if m.Histogram.SampleSum != nil { lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum") samples = append(samples, &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(m.Histogram.GetSampleSum()), Timestamp: timestamp, }) } if m.Histogram.SampleCount != nil { lset := make(model.LabelSet, len(m.Label)+1) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count") count := &model.Sample{ Metric: model.NewMetric(lset), Value: model.SampleValue(m.Histogram.GetSampleCount()), Timestamp: timestamp, } samples = append(samples, count) if !infSeen { // Append a infinity bucket sample. lset := make(model.LabelSet, len(m.Label)+2) for _, p := range m.Label { lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue()) } lset[model.LabelName(model.BucketLabel)] = model.LabelValue("+Inf") lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket") samples = append(samples, &model.Sample{ Metric: model.NewMetric(lset), Value: count.Value, Timestamp: timestamp, }) } } } return samples }