Example #1
0
// Sets this matrix to a rotation matrix that will rotate any vector in counter-clockwise direction around the z-axis.
// param radians The angle in radians.
// return This matrix for the purpose of chaining operations.
func (self *Affine2) SetToRotationRad(radians float32) *Affine2 {
	cos := utils.Cos(radians)
	sin := utils.Sin(radians)

	self.m00 = cos
	self.m01 = -sin
	self.m02 = 0
	self.m10 = sin
	self.m11 = cos
	self.m12 = 0
	return self
}
Example #2
0
// Postmultiplies this matrix with a (counter-clockwise) rotation matrix.
// param radians The angle in radians
// return This matrix for the purpose of chaining.
func (self *Affine2) RotateRad(radians float32) *Affine2 {
	if radians == 0 {
		return self
	}

	cos := utils.Cos(radians)
	sin := utils.Sin(radians)

	tmp00 := self.m00*cos + self.m01*sin
	tmp01 := self.m00*-sin + self.m01*cos
	tmp10 := self.m10*cos + self.m11*sin
	tmp11 := self.m10*-sin + self.m11*cos

	self.m00 = tmp00
	self.m01 = tmp01
	self.m10 = tmp10
	self.m11 = tmp11
	return self
}
Example #3
0
// Sets this matrix to a concatenation of translation, rotation and scale. It is a more efficient form for:
// <code>idt().translate(x, y).rotateRad(radians).scale(scaleX, scaleY)</code>
// param x The translation in x.
// param y The translation in y.
// param radians The angle in radians.
// param scaleX The scale in y.
// param scaleY The scale in x.
// return This matrix for the purpose of chaining operations.
func (self *Affine2) SetToTrnRotRadScl(x, y, radians, scaleX, scaleY float32) *Affine2 {
	self.m02 = x
	self.m12 = y

	if radians == 0 {
		self.m00 = scaleX
		self.m01 = 0
		self.m10 = 0
		self.m11 = scaleY
	} else {
		sin := utils.Sin(radians)
		cos := utils.Cos(radians)

		self.m00 = cos * scaleX
		self.m01 = -sin * scaleY
		self.m10 = sin * scaleX
		self.m11 = cos * scaleY
	}
	return self
}
Example #4
0
// Premultiplies this matrix with a (counter-clockwise) rotation matrix.
// param radians The angle in radians
// return This matrix for the purpose of chaining.
func (self *Affine2) PreRotateRad(radians float32) *Affine2 {
	if radians == 0 {
		return self
	}

	cos := utils.Cos(radians)
	sin := utils.Sin(radians)

	tmp00 := cos*self.m00 - sin*self.m10
	tmp01 := cos*self.m01 - sin*self.m11
	tmp02 := cos*self.m02 - sin*self.m12
	tmp10 := sin*self.m00 + cos*self.m10
	tmp11 := sin*self.m01 + cos*self.m11
	tmp12 := sin*self.m02 + cos*self.m12

	self.m00 = tmp00
	self.m01 = tmp01
	self.m02 = tmp02
	self.m10 = tmp10
	self.m11 = tmp11
	self.m12 = tmp12
	return self
}