// InitVelocity initializes particle velocities selected from a random distribution. // Ensures that the net momentum of the system is zero and scales the average kinetic energy to match a given temperature. func InitVelocity(N int, T0 float64, M float64) [][3]float64 { V := make([][3]float64, N) rand.Seed(1) netP := [3]float64{0, 0, 0} netE := 0.0 for n := 0; n < N; n++ { for i := 0; i < 3; i++ { newP := rand.Float64() - 0.5 netP[i] += newP netE += newP * newP V[n][i] = newP } } netP = vector.Scale(netP, 1.0/float64(N)) vscale := math.Sqrt(3.0 * float64(N) * T0 / (M * netE)) for i, v := range V { correctedV := vector.Scale(vector.Difference(v, netP), vscale) V[i] = correctedV } return V }
// InitPositionCubic initializes particle positions in a simple cubic configuration. func InitPositionCubic(N int, L float64) [][3]float64 { R := make([][3]float64, N) Ncube := 1 for N > Ncube*Ncube*Ncube { Ncube++ } rs := L / float64(Ncube) roffset := (L - rs) / 2 i := 0 for x := 0; x < Ncube; x++ { x := float64(x) for y := 0; y < Ncube; y++ { y := float64(y) for z := 0; z < Ncube; z++ { z := float64(z) pos := vector.Scale([3]float64{x, y, z}, rs) offset := [3]float64{roffset, roffset, roffset} R[i] = vector.Difference(pos, offset) i++ } } } return R }
// Displacement calculates the smallest vector pointing from a to b in a cell with periodic boundary conditions. func Displacement(a, b [3]float64, L float64) [3]float64 { r := vector.Difference(b, a) return PutInBox(r, L) }