Example #1
1
// spendNestedWitnessPubKey generates both a sigScript, and valid witness for
// spending the passed pkScript with the specified input amount. The generated
// sigScript is the version 0 p2wkh witness program corresponding to the queried
// key. The witness stack is identical to that of one which spends a regular
// p2wkh output. The input amount *must* correspond to the output value of the
// previous pkScript, or else verification will fail since the new sighash
// digest algorithm defined in BIP0143 includes the input value in the sighash.
func spendNestedWitnessPubKeyHash(txIn *wire.TxIn, pkScript []byte,
	inputValue int64, chainParams *chaincfg.Params, secrets SecretsSource,
	tx *wire.MsgTx, hashCache *txscript.TxSigHashes, idx int) error {

	// First we need to obtain the key pair related to this p2sh output.
	_, addrs, _, err := txscript.ExtractPkScriptAddrs(pkScript,
		chainParams)
	if err != nil {
		return err
	}
	privKey, compressed, err := secrets.GetKey(addrs[0])
	if err != nil {
		return err
	}
	pubKey := privKey.PubKey()

	var pubKeyHash []byte
	if compressed {
		pubKeyHash = btcutil.Hash160(pubKey.SerializeCompressed())
	} else {
		pubKeyHash = btcutil.Hash160(pubKey.SerializeUncompressed())
	}

	// Next, we'll generate a valid sigScript that'll allow us to spend
	// the p2sh output. The sigScript will contain only a single push of
	// the p2wkh witness program corresponding to the matching public key
	// of this address.
	p2wkhAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubKeyHash, chainParams)
	if err != nil {
		return err
	}
	witnessProgram, err := txscript.PayToAddrScript(p2wkhAddr)
	if err != nil {
		return err
	}
	bldr := txscript.NewScriptBuilder()
	bldr.AddData(witnessProgram)
	sigScript, err := bldr.Script()
	if err != nil {
		return err
	}
	txIn.SignatureScript = sigScript

	// With the sigScript in place, we'll next generate the proper witness
	// that'll allow us to spend the p2wkh output.
	witnessScript, err := txscript.WitnessScript(tx, hashCache, idx,
		inputValue, witnessProgram, txscript.SigHashAll, privKey, compressed)
	if err != nil {
		return err
	}

	txIn.Witness = witnessScript

	return nil
}
Example #2
0
// This example demonstrates creating a script which pays to a bitcoin address.
// It also prints the created script hex and uses the DisasmString function to
// display the disassembled script.
func ExamplePayToAddrScript() {
	// Parse the address to send the coins to into a btcutil.Address
	// which is useful to ensure the accuracy of the address and determine
	// the address type.  It is also required for the upcoming call to
	// PayToAddrScript.
	addressStr := "12gpXQVcCL2qhTNQgyLVdCFG2Qs2px98nV"
	address, err := btcutil.DecodeAddress(addressStr, &chaincfg.MainNetParams)
	if err != nil {
		fmt.Println(err)
		return
	}

	// Create a public key script that pays to the address.
	script, err := txscript.PayToAddrScript(address)
	if err != nil {
		fmt.Println(err)
		return
	}
	fmt.Printf("Script Hex: %x\n", script)

	disasm, err := txscript.DisasmString(script)
	if err != nil {
		fmt.Println(err)
		return
	}
	fmt.Println("Script Disassembly:", disasm)

	// Output:
	// Script Hex: 76a914128004ff2fcaf13b2b91eb654b1dc2b674f7ec6188ac
	// Script Disassembly: OP_DUP OP_HASH160 128004ff2fcaf13b2b91eb654b1dc2b674f7ec61 OP_EQUALVERIFY OP_CHECKSIG
}
Example #3
0
// TstCreateSeriesCredits creates a new credit for every item in the amounts
// slice, locked to the given series' address with branch==1 and index==0.
func TstCreateSeriesCredits(t *testing.T, pool *Pool, seriesID uint32, amounts []int64) []credit {
	addr := TstNewWithdrawalAddress(t, pool, seriesID, Branch(1), Index(0))
	pkScript, err := txscript.PayToAddrScript(addr.addr)
	if err != nil {
		t.Fatal(err)
	}
	msgTx := createMsgTx(pkScript, amounts)
	txSha := msgTx.TxSha()
	credits := make([]credit, len(amounts))
	for i := range msgTx.TxOut {
		c := wtxmgr.Credit{
			OutPoint: wire.OutPoint{
				Hash:  txSha,
				Index: uint32(i),
			},
			BlockMeta: wtxmgr.BlockMeta{
				Block: wtxmgr.Block{Height: TstInputsBlock},
			},
			Amount:   btcutil.Amount(msgTx.TxOut[i].Value),
			PkScript: msgTx.TxOut[i].PkScript,
		}
		credits[i] = newCredit(c, *addr)
	}
	return credits
}
Example #4
0
// createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy
// based on the passed block height to the provided address.  When the address
// is nil, the coinbase transaction will instead be redeemable by anyone.
//
// See the comment for NewBlockTemplate for more information about why the nil
// address handling is useful.
func createCoinbaseTx(params *chaincfg.Params, coinbaseScript []byte, nextBlockHeight int32, addr btcutil.Address) (*btcutil.Tx, error) {
	// Create the script to pay to the provided payment address if one was
	// specified.  Otherwise create a script that allows the coinbase to be
	// redeemable by anyone.
	var pkScript []byte
	if addr != nil {
		var err error
		pkScript, err = txscript.PayToAddrScript(addr)
		if err != nil {
			return nil, err
		}
	} else {
		var err error
		scriptBuilder := txscript.NewScriptBuilder()
		pkScript, err = scriptBuilder.AddOp(txscript.OP_TRUE).Script()
		if err != nil {
			return nil, err
		}
	}

	tx := wire.NewMsgTx(wire.TxVersion)
	tx.AddTxIn(&wire.TxIn{
		// Coinbase transactions have no inputs, so previous outpoint is
		// zero hash and max index.
		PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
			wire.MaxPrevOutIndex),
		SignatureScript: coinbaseScript,
		Sequence:        wire.MaxTxInSequenceNum,
	})
	tx.AddTxOut(&wire.TxOut{
		Value:    blockchain.CalcBlockSubsidy(nextBlockHeight, params),
		PkScript: pkScript,
	})
	return btcutil.NewTx(tx), nil
}
Example #5
0
// selectCoinsAndChange performs coin selection in order to obtain witness
// outputs which sum to at least 'numCoins' amount of satoshis. If coin
// selection is successful/possible, then the selected coins are available
// within the passed contribution's inputs. If necessary, a change address will
// also be generated.
// TODO(roasbeef): remove hardcoded fees and req'd confs for outputs.
func (l *LightningWallet) selectCoinsAndChange(feeRate uint64, amt btcutil.Amount,
	contribution *ChannelContribution) error {

	// We hold the coin select mutex while querying for outputs, and
	// performing coin selection in order to avoid inadvertent double
	// spends across funding transactions.
	l.coinSelectMtx.Lock()
	defer l.coinSelectMtx.Unlock()

	// Find all unlocked unspent witness outputs with greater than 1
	// confirmation.
	// TODO(roasbeef): make num confs a configuration paramter
	coins, err := l.ListUnspentWitness(1)
	if err != nil {
		return err
	}

	// Perform coin selection over our available, unlocked unspent outputs
	// in order to find enough coins to meet the funding amount
	// requirements.
	selectedCoins, changeAmt, err := coinSelect(feeRate, amt, coins)
	if err != nil {
		return err
	}

	// Lock the selected coins. These coins are now "reserved", this
	// prevents concurrent funding requests from referring to and this
	// double-spending the same set of coins.
	contribution.Inputs = make([]*wire.TxIn, len(selectedCoins))
	for i, coin := range selectedCoins {
		l.lockedOutPoints[*coin] = struct{}{}
		l.LockOutpoint(*coin)

		// Empty sig script, we'll actually sign if this reservation is
		// queued up to be completed (the other side accepts).
		contribution.Inputs[i] = wire.NewTxIn(coin, nil, nil)
	}

	// Record any change output(s) generated as a result of the coin
	// selection.
	if changeAmt != 0 {
		changeAddr, err := l.NewAddress(WitnessPubKey, true)
		if err != nil {
			return err
		}
		changeScript, err := txscript.PayToAddrScript(changeAddr)
		if err != nil {
			return err
		}

		contribution.ChangeOutputs = make([]*wire.TxOut, 1)
		contribution.ChangeOutputs[0] = &wire.TxOut{
			Value:    int64(changeAmt),
			PkScript: changeScript,
		}
	}

	return nil
}
Example #6
0
func getTestTxId(miner *rpctest.Harness) (*wire.ShaHash, error) {
	script, err := txscript.PayToAddrScript(testAddr)
	if err != nil {
		return nil, err
	}

	outputs := []*wire.TxOut{&wire.TxOut{2e8, script}}
	return miner.CoinbaseSpend(outputs)
}
Example #7
0
// makeDestinationScriptSource creates a ChangeSource which is used to receive
// all correlated previous input value.  A non-change address is created by this
// function.
func makeDestinationScriptSource(rpcClient *btcrpcclient.Client, accountName string) txauthor.ChangeSource {
	return func() ([]byte, error) {
		destinationAddress, err := rpcClient.GetNewAddress(accountName)
		if err != nil {
			return nil, err
		}
		return txscript.PayToAddrScript(destinationAddress)
	}
}
Example #8
0
// makeTestOutput creates an on-chain output paying to a freshly generated
// p2pkh output with the specified amount.
func makeTestOutput(r *rpctest.Harness, t *testing.T,
	amt btcutil.Amount) (*btcec.PrivateKey, *wire.OutPoint, []byte, error) {

	// Create a fresh key, then send some coins to an address spendable by
	// that key.
	key, err := btcec.NewPrivateKey(btcec.S256())
	if err != nil {
		return nil, nil, nil, err
	}

	// Using the key created above, generate a pkScript which it's able to
	// spend.
	a, err := btcutil.NewAddressPubKey(key.PubKey().SerializeCompressed(), r.ActiveNet)
	if err != nil {
		return nil, nil, nil, err
	}
	selfAddrScript, err := txscript.PayToAddrScript(a.AddressPubKeyHash())
	if err != nil {
		return nil, nil, nil, err
	}
	output := &wire.TxOut{PkScript: selfAddrScript, Value: 1e8}

	// Next, create and broadcast a transaction paying to the output.
	fundTx, err := r.CreateTransaction([]*wire.TxOut{output}, 10)
	if err != nil {
		return nil, nil, nil, err
	}
	txHash, err := r.Node.SendRawTransaction(fundTx, true)
	if err != nil {
		return nil, nil, nil, err
	}

	// The transaction created above should be included within the next
	// generated block.
	blockHash, err := r.Node.Generate(1)
	if err != nil {
		return nil, nil, nil, err
	}
	assertTxInBlock(r, t, blockHash[0], txHash)

	// Locate the output index of the coins spendable by the key we
	// generated above, this is needed in order to create a proper utxo for
	// this output.
	var outputIndex uint32
	if bytes.Equal(fundTx.TxOut[0].PkScript, selfAddrScript) {
		outputIndex = 0
	} else {
		outputIndex = 1
	}

	utxo := &wire.OutPoint{
		Hash:  fundTx.TxHash(),
		Index: outputIndex,
	}

	return key, utxo, selfAddrScript, nil
}
Example #9
0
func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet, numOutputs, btcPerOutput int) error {
	// Using the mining node, spend from a coinbase output numOutputs to
	// give us btcPerOutput with each output.
	satoshiPerOutput := int64(btcPerOutput * 1e8)
	addrs := make([]btcutil.Address, 0, numOutputs)
	for i := 0; i < numOutputs; i++ {
		// Grab a fresh address from the wallet to house this output.
		walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
		if err != nil {
			return err
		}

		script, err := txscript.PayToAddrScript(walletAddr)
		if err != nil {
			return err
		}

		addrs = append(addrs, walletAddr)

		output := &wire.TxOut{satoshiPerOutput, script}
		if _, err := miner.CoinbaseSpend([]*wire.TxOut{output}); err != nil {
			return err
		}
	}

	// TODO(roasbeef): shouldn't hardcode 10, use config param that dictates
	// how many confs we wait before opening a channel.
	// Generate 10 blocks with the mining node, this should mine all
	// numOutputs transactions created above. We generate 10 blocks here
	// in order to give all the outputs a "sufficient" number of confirmations.
	if _, err := miner.Node.Generate(10); err != nil {
		return err
	}

	// Wait until the wallet has finished syncing up to the main chain.
	ticker := time.NewTicker(100 * time.Millisecond)
	expectedBalance := btcutil.Amount(satoshiPerOutput * int64(numOutputs))
out:
	for {
		select {
		case <-ticker.C:
			balance, err := w.ConfirmedBalance(1, false)
			if err != nil {
				return err
			}
			if balance == expectedBalance {
				break out
			}
		}
	}
	ticker.Stop()

	return nil
}
Example #10
0
// createCSVOutput creates an output paying to a trivially redeemable CSV
// pkScript with the specified time-lock.
func createCSVOutput(r *rpctest.Harness, t *testing.T,
	numSatoshis btcutil.Amount, timeLock int32,
	isSeconds bool) ([]byte, *wire.OutPoint, *wire.MsgTx, error) {

	// Convert the time-lock to the proper sequence lock based according to
	// if the lock is seconds or time based.
	sequenceLock := blockchain.LockTimeToSequence(isSeconds,
		uint32(timeLock))

	// Our CSV script is simply: <sequenceLock> OP_CSV OP_DROP
	b := txscript.NewScriptBuilder().
		AddInt64(int64(sequenceLock)).
		AddOp(txscript.OP_CHECKSEQUENCEVERIFY).
		AddOp(txscript.OP_DROP)
	csvScript, err := b.Script()
	if err != nil {
		return nil, nil, nil, err
	}

	// Using the script generated above, create a P2SH output which will be
	// accepted into the mempool.
	p2shAddr, err := btcutil.NewAddressScriptHash(csvScript, r.ActiveNet)
	if err != nil {
		return nil, nil, nil, err
	}
	p2shScript, err := txscript.PayToAddrScript(p2shAddr)
	if err != nil {
		return nil, nil, nil, err
	}
	output := &wire.TxOut{
		PkScript: p2shScript,
		Value:    int64(numSatoshis),
	}

	// Finally create a valid transaction which creates the output crafted
	// above.
	tx, err := r.CreateTransaction([]*wire.TxOut{output}, 10)
	if err != nil {
		return nil, nil, nil, err
	}

	var outputIndex uint32
	if !bytes.Equal(tx.TxOut[0].PkScript, p2shScript) {
		outputIndex = 1
	}

	utxo := &wire.OutPoint{
		Hash:  tx.TxHash(),
		Index: outputIndex,
	}

	return csvScript, utxo, tx, nil
}
Example #11
0
func TstCreatePkScript(t *testing.T, p *Pool, seriesID uint32, branch Branch, idx Index) []byte {
	script := TstEnsureUsedAddr(t, p, seriesID, branch, idx)
	addr, err := p.addressFor(script)
	if err != nil {
		t.Fatal(err)
	}
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		t.Fatal(err)
	}
	return pkScript
}
Example #12
0
func TestSignMultiSigUTXOPkScriptNotP2SH(t *testing.T) {
	tearDown, pool, _ := TstCreatePoolAndTxStore(t)
	defer tearDown()

	mgr := pool.Manager()
	tx := createWithdrawalTx(t, pool, []int64{4e6}, []int64{})
	addr, _ := btcutil.DecodeAddress("1MirQ9bwyQcGVJPwKUgapu5ouK2E2Ey4gX", mgr.ChainParams())
	pubKeyHashPkScript, _ := txscript.PayToAddrScript(addr.(*btcutil.AddressPubKeyHash))
	msgtx := tx.toMsgTx()

	err := signMultiSigUTXO(mgr, msgtx, 0, pubKeyHashPkScript, []RawSig{RawSig{}})

	TstCheckError(t, "", err, ErrTxSigning)
}
Example #13
0
// finalizeCurrentTx finalizes the transaction in w.current, moves it to the
// list of finalized transactions and replaces w.current with a new empty
// transaction.
func (w *withdrawal) finalizeCurrentTx() error {
	log.Debug("Finalizing current transaction")
	tx := w.current
	if len(tx.outputs) == 0 {
		log.Debug("Current transaction has no outputs, doing nothing")
		return nil
	}

	pkScript, err := txscript.PayToAddrScript(w.status.nextChangeAddr.addr)
	if err != nil {
		return newError(ErrWithdrawalProcessing, "failed to generate pkScript for change address", err)
	}
	if tx.addChange(pkScript) {
		var err error
		w.status.nextChangeAddr, err = nextChangeAddress(w.status.nextChangeAddr)
		if err != nil {
			return newError(ErrWithdrawalProcessing, "failed to get next change address", err)
		}
	}

	ntxid := tx.ntxid()
	for i, txOut := range tx.outputs {
		outputStatus := w.status.outputs[txOut.request.outBailmentID()]
		outputStatus.addOutpoint(
			OutBailmentOutpoint{ntxid: ntxid, index: uint32(i), amount: txOut.amount})
	}

	// Check that WithdrawalOutput entries with status==success have the sum of
	// their outpoint amounts matching the requested amount.
	for _, txOut := range tx.outputs {
		// Look up the original request we received because txOut.request may
		// represent a split request and thus have a different amount from the
		// original one.
		outputStatus := w.status.outputs[txOut.request.outBailmentID()]
		origRequest := outputStatus.request
		amtFulfilled := btcutil.Amount(0)
		for _, outpoint := range outputStatus.outpoints {
			amtFulfilled += outpoint.amount
		}
		if outputStatus.status == statusSuccess && amtFulfilled != origRequest.Amount {
			msg := fmt.Sprintf("%s was not completely fulfilled; only %v fulfilled", origRequest,
				amtFulfilled)
			return newError(ErrWithdrawalProcessing, msg, nil)
		}
	}

	w.transactions = append(w.transactions, tx)
	w.current = newWithdrawalTx(w.txOptions)
	return nil
}
Example #14
0
// spendWitnessKeyHash generates, and sets a valid witness for spending the
// passed pkScript with the specified input amount. The input amount *must*
// correspond to the output value of the previous pkScript, or else verification
// will fail since the new sighash digest algorithm defined in BIP0143 includes
// the input value in the sighash.
func spendWitnessKeyHash(txIn *wire.TxIn, pkScript []byte,
	inputValue int64, chainParams *chaincfg.Params, secrets SecretsSource,
	tx *wire.MsgTx, hashCache *txscript.TxSigHashes, idx int) error {

	// First obtain the key pair associated with this p2wkh address.
	_, addrs, _, err := txscript.ExtractPkScriptAddrs(pkScript,
		chainParams)
	if err != nil {
		return err
	}
	privKey, compressed, err := secrets.GetKey(addrs[0])
	if err != nil {
		return err
	}
	pubKey := privKey.PubKey()

	// Once we have the key pair, generate a p2wkh address type, respecting
	// the compression type of the generated key.
	var pubKeyHash []byte
	if compressed {
		pubKeyHash = btcutil.Hash160(pubKey.SerializeCompressed())
	} else {
		pubKeyHash = btcutil.Hash160(pubKey.SerializeUncompressed())
	}
	p2wkhAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubKeyHash, chainParams)
	if err != nil {
		return err
	}

	// With the concrete address type, we can now generate the
	// corresponding witness program to be used to generate a valid witness
	// which will allow us to spend this output.
	witnessProgram, err := txscript.PayToAddrScript(p2wkhAddr)
	if err != nil {
		return err
	}
	witnessScript, err := txscript.WitnessScript(tx, hashCache, idx,
		inputValue, witnessProgram, txscript.SigHashAll, privKey, true)
	if err != nil {
		return err
	}

	txIn.Witness = witnessScript

	return nil
}
Example #15
0
// addrPairsToOutputs converts a map describing a set of outputs to be created,
// the outputs themselves. The passed map pairs up an address, to a desired
// output value amount. Each address is converted to its corresponding pkScript
// to be used within the constructed output(s).
func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) {
	outputs := make([]*wire.TxOut, 0, len(addrPairs))
	for addr, amt := range addrPairs {
		addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params)
		if err != nil {
			return nil, err
		}

		pkscript, err := txscript.PayToAddrScript(addr)
		if err != nil {
			return nil, err
		}

		outputs = append(outputs, wire.NewTxOut(amt, pkscript))
	}

	return outputs, nil
}
Example #16
0
func TstNewOutputRequest(t *testing.T, transaction uint32, address string, amount btcutil.Amount,
	net *chaincfg.Params) OutputRequest {
	addr, err := btcutil.DecodeAddress(address, net)
	if err != nil {
		t.Fatalf("Unable to decode address %s", address)
	}
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		t.Fatalf("Unable to generate pkScript for %v", addr)
	}
	return OutputRequest{
		PkScript:    pkScript,
		Address:     addr,
		Amount:      amount,
		Server:      "server",
		Transaction: transaction,
	}
}
Example #17
0
// SignThis isn't used anymore...
func (t *TxStore) SignThis(tx *wire.MsgTx) error {
	fmt.Printf("-= SignThis =-\n")

	// sort tx before signing.
	txsort.InPlaceSort(tx)

	sigs := make([][]byte, len(tx.TxIn))
	// first iterate over each input
	for j, in := range tx.TxIn {
		for k := uint32(0); k < uint32(len(t.Adrs)); k++ {
			child, err := t.rootPrivKey.Child(k + hdkeychain.HardenedKeyStart)
			if err != nil {
				return err
			}
			myadr, err := child.Address(t.Param)
			if err != nil {
				return err
			}
			adrScript, err := txscript.PayToAddrScript(myadr)
			if err != nil {
				return err
			}
			if bytes.Equal(adrScript, in.SignatureScript) {
				fmt.Printf("Hit; key %d matches input %d. Signing.\n", k, j)
				priv, err := child.ECPrivKey()
				if err != nil {
					return err
				}
				sigs[j], err = txscript.SignatureScript(
					tx, j, in.SignatureScript, txscript.SigHashAll, priv, true)
				if err != nil {
					return err
				}
				break
			}
		}
	}
	for i, s := range sigs {
		if s != nil {
			tx.TxIn[i].SignatureScript = s
		}
	}
	return nil
}
Example #18
0
func TestSignMultiSigUTXORedeemScriptNotFound(t *testing.T) {
	tearDown, pool, _ := TstCreatePoolAndTxStore(t)
	defer tearDown()

	mgr := pool.Manager()
	tx := createWithdrawalTx(t, pool, []int64{4e6}, []int64{})
	// This is a P2SH address for which the addr manager doesn't have the redeem
	// script.
	addr, _ := btcutil.DecodeAddress("3Hb4xcebcKg4DiETJfwjh8sF4uDw9rqtVC", mgr.ChainParams())
	if _, err := mgr.Address(addr); err == nil {
		t.Fatalf("Address %s found in manager when it shouldn't", addr)
	}
	msgtx := tx.toMsgTx()

	pkScript, _ := txscript.PayToAddrScript(addr.(*btcutil.AddressScriptHash))
	err := signMultiSigUTXO(mgr, msgtx, 0, pkScript, []RawSig{RawSig{}})

	TstCheckError(t, "", err, ErrTxSigning)
}
Example #19
0
func testMemWalletLockedOutputs(r *Harness, t *testing.T) {
	// Obtain the initial balance of the wallet at this point.
	startingBalance := r.ConfirmedBalance()

	// First, create a signed transaction spending some outputs.
	addr, err := r.NewAddress()
	if err != nil {
		t.Fatalf("unable to generate new address: %v", err)
	}
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		t.Fatalf("unable to create script: %v", err)
	}
	outputAmt := btcutil.Amount(50 * btcutil.SatoshiPerBitcoin)
	output := wire.NewTxOut(int64(outputAmt), pkScript)
	tx, err := r.CreateTransaction([]*wire.TxOut{output}, 10)
	if err != nil {
		t.Fatalf("unable to create transaction: %v", err)
	}

	// The current wallet balance should now be at least 50 BTC less
	// (accounting for fees) than the period balance
	currentBalance := r.ConfirmedBalance()
	if !(currentBalance <= startingBalance-outputAmt) {
		t.Fatalf("spent outputs not locked: previous balance %v, "+
			"current balance %v", startingBalance, currentBalance)
	}

	// Now unlocked all the spent inputs within the unbroadcast signed
	// transaction. The current balance should now be exactly that of the
	// starting balance.
	r.UnlockOutputs(tx.TxIn)
	currentBalance = r.ConfirmedBalance()
	if currentBalance != startingBalance {
		t.Fatalf("current and starting balance should now match: "+
			"expected %v, got %v", startingBalance, currentBalance)
	}
}
Example #20
0
// createCoinbaseTx returns a coinbase transaction paying an appropriate
// subsidy based on the passed block height to the provided address.
func createCoinbaseTx(coinbaseScript []byte, nextBlockHeight int32,
	addr btcutil.Address, net *chaincfg.Params) (*btcutil.Tx, error) {

	// Create the script to pay to the provided payment address.
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		return nil, err
	}

	tx := wire.NewMsgTx(wire.TxVersion)
	tx.AddTxIn(&wire.TxIn{
		// Coinbase transactions have no inputs, so previous outpoint is
		// zero hash and max index.
		PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
			wire.MaxPrevOutIndex),
		SignatureScript: coinbaseScript,
		Sequence:        wire.MaxTxInSequenceNum,
	})
	tx.AddTxOut(&wire.TxOut{
		Value:    blockchain.CalcBlockSubsidy(nextBlockHeight, net),
		PkScript: pkScript,
	})
	return btcutil.NewTx(tx), nil
}
Example #21
0
func testListTransactionDetails(miner *rpctest.Harness, wallet *lnwallet.LightningWallet, t *testing.T) {
	t.Log("Running list transaction details test")

	// Create 5 new outputs spendable by the wallet.
	const numTxns = 5
	const outputAmt = btcutil.SatoshiPerBitcoin
	txids := make(map[wire.ShaHash]struct{})
	for i := 0; i < numTxns; i++ {
		addr, err := wallet.NewAddress(lnwallet.WitnessPubKey, false)
		if err != nil {
			t.Fatalf("unable to create new address: %v", err)
		}
		script, err := txscript.PayToAddrScript(addr)
		if err != nil {
			t.Fatalf("unable to create output script: %v", err)
		}

		output := &wire.TxOut{outputAmt, script}
		txid, err := miner.CoinbaseSpend([]*wire.TxOut{output})
		if err != nil {
			t.Fatalf("unable to send coinbase: %v", err)
		}
		txids[*txid] = struct{}{}
	}

	// Generate 10 blocks to mine all the transactions created above.
	const numBlocksMined = 10
	blocks, err := miner.Node.Generate(numBlocksMined)
	if err != nil {
		t.Fatalf("unable to mine blocks: %v", err)
	}

	// Next, fetch all the current transaction details.
	// TODO(roasbeef): use ntfn client here instead?
	time.Sleep(time.Second * 2)
	txDetails, err := wallet.ListTransactionDetails()
	if err != nil {
		t.Fatalf("unable to fetch tx details: %v", err)
	}

	// Each of the transactions created above should be found with the
	// proper details populated.
	for _, txDetail := range txDetails {
		if _, ok := txids[txDetail.Hash]; !ok {
			continue
		}

		if txDetail.NumConfirmations != numBlocksMined {
			t.Fatalf("num confs incorrect, got %v expected %v",
				txDetail.NumConfirmations, numBlocksMined)
		}
		if txDetail.Value != outputAmt {
			t.Fatalf("tx value incorrect, got %v expected %v",
				txDetail.Value, outputAmt)
		}
		if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) {
			t.Fatalf("block hash mismatch, got %v expected %v",
				txDetail.BlockHash, blocks[0])
		}

		delete(txids, txDetail.Hash)
	}
	if len(txids) != 0 {
		t.Fatalf("all transactions not found in details!")
	}

	// Next create a transaction paying to an output which isn't under the
	// wallet's control.
	b := txscript.NewScriptBuilder()
	b.AddOp(txscript.OP_0)
	outputScript, err := b.Script()
	if err != nil {
		t.Fatalf("unable to make output script: %v", err)
	}
	burnOutput := wire.NewTxOut(outputAmt, outputScript)
	burnTXID, err := wallet.SendOutputs([]*wire.TxOut{burnOutput})
	if err != nil {
		t.Fatalf("unable to create burn tx: %v", err)
	}
	burnBlock, err := miner.Node.Generate(1)
	if err != nil {
		t.Fatalf("unable to mine block: %v", err)
	}

	// Fetch the transaction details again, the new transaction should be
	// shown as debiting from the wallet's balance.
	time.Sleep(time.Second * 2)
	txDetails, err = wallet.ListTransactionDetails()
	if err != nil {
		t.Fatalf("unable to fetch tx details: %v", err)
	}
	var burnTxFound bool
	for _, txDetail := range txDetails {
		if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) {
			continue
		}

		burnTxFound = true
		if txDetail.NumConfirmations != 1 {
			t.Fatalf("num confs incorrect, got %v expected %v",
				txDetail.NumConfirmations, 1)
		}
		if txDetail.Value >= -outputAmt {
			t.Fatalf("tx value incorrect, got %v expected %v",
				txDetail.Value, -outputAmt)
		}
		if !bytes.Equal(txDetail.BlockHash[:], burnBlock[0][:]) {
			t.Fatalf("block hash mismatch, got %v expected %v",
				txDetail.BlockHash, burnBlock[0])
		}
	}
	if !burnTxFound {
		t.Fatalf("tx burning btc not found")
	}
}
Example #22
0
// newBobNode generates a test "ln node" to interact with Alice (us). For the
// funding transaction, bob has a single output totaling 7BTC. For our basic
// test, he'll fund the channel with 5BTC, leaving 2BTC to the change output.
// TODO(roasbeef): proper handling of change etc.
func newBobNode(miner *rpctest.Harness, amt btcutil.Amount) (*bobNode, error) {
	// First, parse Bob's priv key in order to obtain a key he'll use for the
	// multi-sig funding transaction.
	privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)

	// Next, generate an output redeemable by bob.
	pkHash := btcutil.Hash160(pubKey.SerializeCompressed())
	bobAddr, err := btcutil.NewAddressWitnessPubKeyHash(
		pkHash,
		miner.ActiveNet)
	if err != nil {
		return nil, err
	}
	bobAddrScript, err := txscript.PayToAddrScript(bobAddr)
	if err != nil {
		return nil, err
	}

	// Give bobNode one 7 BTC output for use in creating channels.
	output := &wire.TxOut{7e8, bobAddrScript}
	mainTxid, err := miner.CoinbaseSpend([]*wire.TxOut{output})
	if err != nil {
		return nil, err
	}

	// Mine a block in order to include the above output in a block. During
	// the reservation workflow, we currently test to ensure that the funding
	// output we're given actually exists.
	if _, err := miner.Node.Generate(1); err != nil {
		return nil, err
	}

	// Grab the transaction in order to locate the output index to Bob.
	tx, err := miner.Node.GetRawTransaction(mainTxid)
	if err != nil {
		return nil, err
	}
	found, index := lnwallet.FindScriptOutputIndex(tx.MsgTx(), bobAddrScript)
	if !found {
		return nil, fmt.Errorf("output to bob never created")
	}

	prevOut := wire.NewOutPoint(mainTxid, index)
	bobTxIn := wire.NewTxIn(prevOut, nil, nil)

	// Using bobs priv key above, create a change output he can spend.
	bobChangeOutput := wire.NewTxOut(2*1e8, bobAddrScript)

	// Bob's initial revocation hash is just his private key with the first
	// byte changed...
	var revocation [32]byte
	copy(revocation[:], bobsPrivKey)
	revocation[0] = 0xff

	// His ID is just as creative...
	var id [wire.HashSize]byte
	id[0] = 0xff

	return &bobNode{
		id:               pubKey,
		privKey:          privKey,
		channelKey:       pubKey,
		deliveryAddress:  bobAddr,
		revocation:       revocation,
		fundingAmt:       amt,
		delay:            5,
		availableOutputs: []*wire.TxIn{bobTxIn},
		changeOutputs:    []*wire.TxOut{bobChangeOutput},
	}, nil
}
Example #23
0
func testTransactionSubscriptions(miner *rpctest.Harness, w *lnwallet.LightningWallet, t *testing.T) {
	t.Log("Running transaction subscriptions test")

	// First, check to see if this wallet meets the TransactionNotifier
	// interface, if not then we'll skip this test for this particular
	// implementation of the WalletController.
	txClient, err := w.SubscribeTransactions()
	if err != nil {
		t.Fatalf("unable to generate tx subscription: %v")
	}
	defer txClient.Cancel()

	const (
		outputAmt = btcutil.SatoshiPerBitcoin
		numTxns   = 3
	)
	unconfirmedNtfns := make(chan struct{})
	go func() {
		for i := 0; i < numTxns; i++ {
			txDetail := <-txClient.UnconfirmedTransactions()
			if txDetail.NumConfirmations != 0 {
				t.Fatalf("incorrect number of confs, expected %v got %v",
					0, txDetail.NumConfirmations)
			}
			if txDetail.Value != outputAmt {
				t.Fatalf("incorrect output amt, expected %v got %v",
					outputAmt, txDetail.Value)
			}
			if txDetail.BlockHash != nil {
				t.Fatalf("block hash should be nil, is instead %v",
					txDetail.BlockHash)
			}
		}

		close(unconfirmedNtfns)
	}()

	// Next, fetch a fresh address from the wallet, create 3 new outputs
	// with the pkScript.
	for i := 0; i < numTxns; i++ {
		addr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
		if err != nil {
			t.Fatalf("unable to create new address: %v", err)
		}
		script, err := txscript.PayToAddrScript(addr)
		if err != nil {
			t.Fatalf("unable to create output script: %v", err)
		}

		output := &wire.TxOut{outputAmt, script}
		if _, err := miner.CoinbaseSpend([]*wire.TxOut{output}); err != nil {
			t.Fatalf("unable to send coinbase: %v", err)
		}
	}

	// We should receive a notification for all three transactions
	// generated above.
	select {
	case <-time.After(time.Second * 5):
		t.Fatalf("transactions not received after 3 seconds")
	case <-unconfirmedNtfns: // Fall through on successs
	}

	confirmedNtfns := make(chan struct{})
	go func() {
		for i := 0; i < numTxns; i++ {
			txDetail := <-txClient.ConfirmedTransactions()
			if txDetail.NumConfirmations != 1 {
				t.Fatalf("incorrect number of confs, expected %v got %v",
					0, txDetail.NumConfirmations)
			}
			if txDetail.Value != outputAmt {
				t.Fatalf("incorrect output amt, expected %v got %v",
					outputAmt, txDetail.Value)
			}
		}
		close(confirmedNtfns)
	}()

	// Next mine a single block, all the transactions generated above
	// should be included.
	if _, err := miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// We should receive a notification for all three transactions
	// since they should be mined in the next block.
	select {
	case <-time.After(time.Second * 5):
		t.Fatalf("transactions not received after 3 seconds")
	case <-confirmedNtfns: // Fall through on successs
	}
}
Example #24
0
// This example demonstrates how to use the Pool.StartWithdrawal method.
func Example_startWithdrawal() {
	// Create the address manager and votingpool DB namespace. See the example
	// for the Create() function for more info on how this is done.
	mgr, vpNamespace, tearDownFunc, err := exampleCreateMgrAndDBNamespace()
	if err != nil {
		fmt.Println(err)
		return
	}
	defer tearDownFunc()

	// Create a pool and a series. See the DepositAddress example for more info
	// on how this is done.
	pool, seriesID, err := exampleCreatePoolAndSeries(mgr, vpNamespace)
	if err != nil {
		fmt.Println(err)
		return
	}

	// Unlock the manager
	if err := mgr.Unlock(privPassphrase); err != nil {
		fmt.Println(err)
		return
	}
	defer mgr.Lock()

	addr, _ := btcutil.DecodeAddress("1MirQ9bwyQcGVJPwKUgapu5ouK2E2Ey4gX", mgr.ChainParams())
	pkScript, _ := txscript.PayToAddrScript(addr)
	requests := []votingpool.OutputRequest{
		votingpool.OutputRequest{
			PkScript:    pkScript,
			Address:     addr,
			Amount:      1e6,
			Server:      "server-id",
			Transaction: 123},
	}
	changeStart, err := pool.ChangeAddress(seriesID, votingpool.Index(0))
	if err != nil {
		fmt.Println(err)
		return
	}
	// This is only needed because we have not used any deposit addresses from
	// the series, and we cannot create a WithdrawalAddress for an unused
	// branch/idx pair.
	if err = pool.EnsureUsedAddr(seriesID, votingpool.Branch(1), votingpool.Index(0)); err != nil {
		fmt.Println(err)
		return
	}
	startAddr, err := pool.WithdrawalAddress(seriesID, votingpool.Branch(1), votingpool.Index(0))
	if err != nil {
		fmt.Println(err)
		return
	}
	lastSeriesID := seriesID
	dustThreshold := btcutil.Amount(1e4)
	currentBlock := int32(19432)
	roundID := uint32(0)
	txstore, tearDownFunc, err := exampleCreateTxStore()
	if err != nil {
		fmt.Println(err)
		return
	}
	_, err = pool.StartWithdrawal(
		roundID, requests, *startAddr, lastSeriesID, *changeStart, txstore, currentBlock,
		dustThreshold)
	if err != nil {
		fmt.Println(err)
	}

	// Output:
	//
}
Example #25
0
// handleSingleContribution is called as the second step to a single funder
// workflow to which we are the responder. It simply saves the remote peer's
// contribution to the channel, as solely the remote peer will contribute any
// funds to the channel.
func (l *LightningWallet) handleSingleContribution(req *addSingleContributionMsg) {
	l.limboMtx.Lock()
	pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
	l.limboMtx.Unlock()
	if !ok {
		req.err <- fmt.Errorf("attempted to update non-existant funding state")
		return
	}

	// Grab the mutex on the ChannelReservation to ensure thead-safety
	pendingReservation.Lock()
	defer pendingReservation.Unlock()

	// Simply record the counterparty's contribution into the pending
	// reservation data as they'll be solely funding the channel entirely.
	pendingReservation.theirContribution = req.contribution
	theirContribution := pendingReservation.theirContribution

	// Additionally, we can now also record the redeem script of the
	// funding transaction.
	// TODO(roasbeef): switch to proper pubkey derivation
	ourKey := pendingReservation.partialState.OurMultiSigKey
	theirKey := theirContribution.MultiSigKey
	channelCapacity := int64(pendingReservation.partialState.Capacity)
	witnessScript, _, err := GenFundingPkScript(ourKey.SerializeCompressed(),
		theirKey.SerializeCompressed(), channelCapacity)
	if err != nil {
		req.err <- err
		return
	}
	pendingReservation.partialState.FundingWitnessScript = witnessScript

	masterElkremRoot, err := l.deriveMasterElkremRoot()
	if err != nil {
		req.err <- err
		return
	}

	// Now that we know their commitment key, we can create the revocation
	// key for our version of the initial commitment transaction.
	elkremRoot := deriveElkremRoot(masterElkremRoot, ourKey, theirKey)
	elkremSender := elkrem.NewElkremSender(elkremRoot)
	firstPreimage, err := elkremSender.AtIndex(0)
	if err != nil {
		req.err <- err
		return
	}
	pendingReservation.partialState.LocalElkrem = elkremSender
	theirCommitKey := theirContribution.CommitKey
	ourRevokeKey := DeriveRevocationPubkey(theirCommitKey, firstPreimage[:])

	// Initialize an empty sha-chain for them, tracking the current pending
	// revocation hash (we don't yet know the pre-image so we can't add it
	// to the chain).
	remoteElkrem := &elkrem.ElkremReceiver{}
	pendingReservation.partialState.RemoteElkrem = remoteElkrem

	// Record the counterpaty's remaining contributions to the channel,
	// converting their delivery address into a public key script.
	deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress)
	if err != nil {
		req.err <- err
		return
	}
	pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay
	pendingReservation.partialState.TheirDeliveryScript = deliveryScript
	pendingReservation.partialState.TheirCommitKey = theirContribution.CommitKey
	pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey
	pendingReservation.ourContribution.RevocationKey = ourRevokeKey

	req.err <- nil
	return
}
Example #26
0
// handleContributionMsg processes the second workflow step for the lifetime of
// a channel reservation. Upon completion, the reservation will carry a
// completed funding transaction (minus the counterparty's input signatures),
// both versions of the commitment transaction, and our signature for their
// version of the commitment transaction.
func (l *LightningWallet) handleContributionMsg(req *addContributionMsg) {
	l.limboMtx.Lock()
	pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
	l.limboMtx.Unlock()
	if !ok {
		req.err <- fmt.Errorf("attempted to update non-existant funding state")
		return
	}

	// Grab the mutex on the ChannelReservation to ensure thead-safety
	pendingReservation.Lock()
	defer pendingReservation.Unlock()

	// Create a blank, fresh transaction. Soon to be a complete funding
	// transaction which will allow opening a lightning channel.
	pendingReservation.fundingTx = wire.NewMsgTx()
	fundingTx := pendingReservation.fundingTx

	// Some temporary variables to cut down on the resolution verbosity.
	pendingReservation.theirContribution = req.contribution
	theirContribution := req.contribution
	ourContribution := pendingReservation.ourContribution

	// Add all multi-party inputs and outputs to the transaction.
	for _, ourInput := range ourContribution.Inputs {
		fundingTx.AddTxIn(ourInput)
	}
	for _, theirInput := range theirContribution.Inputs {
		fundingTx.AddTxIn(theirInput)
	}
	for _, ourChangeOutput := range ourContribution.ChangeOutputs {
		fundingTx.AddTxOut(ourChangeOutput)
	}
	for _, theirChangeOutput := range theirContribution.ChangeOutputs {
		fundingTx.AddTxOut(theirChangeOutput)
	}

	ourKey := pendingReservation.partialState.OurMultiSigKey
	theirKey := theirContribution.MultiSigKey

	// Finally, add the 2-of-2 multi-sig output which will set up the lightning
	// channel.
	channelCapacity := int64(pendingReservation.partialState.Capacity)
	witnessScript, multiSigOut, err := GenFundingPkScript(ourKey.SerializeCompressed(),
		theirKey.SerializeCompressed(), channelCapacity)
	if err != nil {
		req.err <- err
		return
	}
	pendingReservation.partialState.FundingWitnessScript = witnessScript

	// Sort the transaction. Since both side agree to a canonical
	// ordering, by sorting we no longer need to send the entire
	// transaction. Only signatures will be exchanged.
	fundingTx.AddTxOut(multiSigOut)
	txsort.InPlaceSort(pendingReservation.fundingTx)

	// Next, sign all inputs that are ours, collecting the signatures in
	// order of the inputs.
	pendingReservation.ourFundingInputScripts = make([]*InputScript, 0, len(ourContribution.Inputs))
	signDesc := SignDescriptor{
		HashType:  txscript.SigHashAll,
		SigHashes: txscript.NewTxSigHashes(fundingTx),
	}
	for i, txIn := range fundingTx.TxIn {
		info, err := l.FetchInputInfo(&txIn.PreviousOutPoint)
		if err == ErrNotMine {
			continue
		} else if err != nil {
			req.err <- err
			return
		}

		signDesc.Output = info
		signDesc.InputIndex = i

		inputScript, err := l.Signer.ComputeInputScript(fundingTx, &signDesc)
		if err != nil {
			req.err <- err
			return
		}

		txIn.SignatureScript = inputScript.ScriptSig
		txIn.Witness = inputScript.Witness
		pendingReservation.ourFundingInputScripts = append(
			pendingReservation.ourFundingInputScripts,
			inputScript,
		)
	}

	// Locate the index of the multi-sig outpoint in order to record it
	// since the outputs are canonically sorted. If this is a single funder
	// workflow, then we'll also need to send this to the remote node.
	fundingTxID := fundingTx.TxSha()
	_, multiSigIndex := FindScriptOutputIndex(fundingTx, multiSigOut.PkScript)
	fundingOutpoint := wire.NewOutPoint(&fundingTxID, multiSigIndex)
	pendingReservation.partialState.FundingOutpoint = fundingOutpoint

	// Initialize an empty sha-chain for them, tracking the current pending
	// revocation hash (we don't yet know the pre-image so we can't add it
	// to the chain).
	e := &elkrem.ElkremReceiver{}
	pendingReservation.partialState.RemoteElkrem = e
	pendingReservation.partialState.TheirCurrentRevocation = theirContribution.RevocationKey

	masterElkremRoot, err := l.deriveMasterElkremRoot()
	if err != nil {
		req.err <- err
		return
	}

	// Now that we have their commitment key, we can create the revocation
	// key for the first version of our commitment transaction. To do so,
	// we'll first create our elkrem root, then grab the first pre-iamge
	// from it.
	elkremRoot := deriveElkremRoot(masterElkremRoot, ourKey, theirKey)
	elkremSender := elkrem.NewElkremSender(elkremRoot)
	pendingReservation.partialState.LocalElkrem = elkremSender
	firstPreimage, err := elkremSender.AtIndex(0)
	if err != nil {
		req.err <- err
		return
	}
	theirCommitKey := theirContribution.CommitKey
	ourRevokeKey := DeriveRevocationPubkey(theirCommitKey, firstPreimage[:])

	// Create the txIn to our commitment transaction; required to construct
	// the commitment transactions.
	fundingTxIn := wire.NewTxIn(wire.NewOutPoint(&fundingTxID, multiSigIndex), nil, nil)

	// With the funding tx complete, create both commitment transactions.
	// TODO(roasbeef): much cleanup + de-duplication
	pendingReservation.fundingLockTime = theirContribution.CsvDelay
	ourBalance := ourContribution.FundingAmount
	theirBalance := theirContribution.FundingAmount
	ourCommitKey := ourContribution.CommitKey
	ourCommitTx, err := CreateCommitTx(fundingTxIn, ourCommitKey, theirCommitKey,
		ourRevokeKey, ourContribution.CsvDelay,
		ourBalance, theirBalance)
	if err != nil {
		req.err <- err
		return
	}
	theirCommitTx, err := CreateCommitTx(fundingTxIn, theirCommitKey, ourCommitKey,
		theirContribution.RevocationKey, theirContribution.CsvDelay,
		theirBalance, ourBalance)
	if err != nil {
		req.err <- err
		return
	}

	// Sort both transactions according to the agreed upon cannonical
	// ordering. This lets us skip sending the entire transaction over,
	// instead we'll just send signatures.
	txsort.InPlaceSort(ourCommitTx)
	txsort.InPlaceSort(theirCommitTx)

	deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress)
	if err != nil {
		req.err <- err
		return
	}

	// Record newly available information witin the open channel state.
	pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay
	pendingReservation.partialState.TheirDeliveryScript = deliveryScript
	pendingReservation.partialState.ChanID = fundingOutpoint
	pendingReservation.partialState.TheirCommitKey = theirCommitKey
	pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey
	pendingReservation.partialState.OurCommitTx = ourCommitTx
	pendingReservation.ourContribution.RevocationKey = ourRevokeKey

	// Generate a signature for their version of the initial commitment
	// transaction.
	signDesc = SignDescriptor{
		WitnessScript: witnessScript,
		PubKey:        ourKey,
		Output:        multiSigOut,
		HashType:      txscript.SigHashAll,
		SigHashes:     txscript.NewTxSigHashes(theirCommitTx),
		InputIndex:    0,
	}
	sigTheirCommit, err := l.Signer.SignOutputRaw(theirCommitTx, &signDesc)
	if err != nil {
		req.err <- err
		return
	}
	pendingReservation.ourCommitmentSig = sigTheirCommit

	req.err <- nil
}
Example #27
0
// handleFundingReserveRequest processes a message intending to create, and
// validate a funding reservation request.
func (l *LightningWallet) handleFundingReserveRequest(req *initFundingReserveMsg) {
	// It isn't possible to create a channel with zero funds committed.
	if req.fundingAmount+req.capacity == 0 {
		req.err <- fmt.Errorf("cannot have channel with zero " +
			"satoshis funded")
		req.resp <- nil
		return
	}

	id := atomic.AddUint64(&l.nextFundingID, 1)
	totalCapacity := req.capacity + commitFee
	reservation := NewChannelReservation(totalCapacity, req.fundingAmount,
		req.minFeeRate, l, id, req.numConfs)

	// Grab the mutex on the ChannelReservation to ensure thread-safety
	reservation.Lock()
	defer reservation.Unlock()

	reservation.partialState.IdentityPub = req.nodeID
	reservation.nodeAddr = req.nodeAddr
	ourContribution := reservation.ourContribution
	ourContribution.CsvDelay = req.csvDelay
	reservation.partialState.LocalCsvDelay = req.csvDelay

	// If we're on the receiving end of a single funder channel then we
	// don't need to perform any coin selection. Otherwise, attempt to
	// obtain enough coins to meet the required funding amount.
	if req.fundingAmount != 0 {
		// TODO(roasbeef): consult model for proper fee rate on funding
		// tx
		feeRate := uint64(10)
		amt := req.fundingAmount + commitFee
		err := l.selectCoinsAndChange(feeRate, amt, ourContribution)
		if err != nil {
			req.err <- err
			req.resp <- nil
			return
		}
	}

	// Grab two fresh keys from our HD chain, one will be used for the
	// multi-sig funding transaction, and the other for the commitment
	// transaction.
	multiSigKey, err := l.NewRawKey()
	if err != nil {
		req.err <- err
		req.resp <- nil
		return
	}
	commitKey, err := l.NewRawKey()
	if err != nil {
		req.err <- err
		req.resp <- nil
		return
	}
	reservation.partialState.OurMultiSigKey = multiSigKey
	ourContribution.MultiSigKey = multiSigKey
	reservation.partialState.OurCommitKey = commitKey
	ourContribution.CommitKey = commitKey

	// Generate a fresh address to be used in the case of a cooperative
	// channel close.
	deliveryAddress, err := l.NewAddress(WitnessPubKey, false)
	if err != nil {
		req.err <- err
		req.resp <- nil
		return
	}
	deliveryScript, err := txscript.PayToAddrScript(deliveryAddress)
	if err != nil {
		req.err <- err
		req.resp <- nil
		return
	}
	reservation.partialState.OurDeliveryScript = deliveryScript
	ourContribution.DeliveryAddress = deliveryAddress

	// Create a limbo and record entry for this newly pending funding
	// request.
	l.limboMtx.Lock()
	l.fundingLimbo[id] = reservation
	l.limboMtx.Unlock()

	// Funding reservation request successfully handled. The funding inputs
	// will be marked as unavailable until the reservation is either
	// completed, or canceled.
	req.resp <- reservation
	req.err <- nil
}
Example #28
0
// Ingest puts a tx into the DB atomically.  This can result in a
// gain, a loss, or no result.  Gain or loss in satoshis is returned.
func (ts *TxStore) Ingest(tx *wire.MsgTx, height int32) (uint32, error) {
	var hits uint32
	var err error
	var nUtxoBytes [][]byte

	// tx has been OK'd by SPV; check tx sanity
	utilTx := btcutil.NewTx(tx) // convert for validation
	// checks basic stuff like there are inputs and ouputs
	err = blockchain.CheckTransactionSanity(utilTx)
	if err != nil {
		return hits, err
	}
	// note that you can't check signatures; this is SPV.
	// 0 conf SPV means pretty much nothing.  Anyone can say anything.

	spentOPs := make([][]byte, len(tx.TxIn))
	// before entering into db, serialize all inputs of the ingested tx
	for i, txin := range tx.TxIn {
		spentOPs[i], err = outPointToBytes(&txin.PreviousOutPoint)
		if err != nil {
			return hits, err
		}
	}

	// go through txouts, and then go through addresses to match

	// generate PKscripts for all addresses
	wPKscripts := make([][]byte, len(ts.Adrs))
	aPKscripts := make([][]byte, len(ts.Adrs))

	for i, _ := range ts.Adrs {
		// iterate through all our addresses
		// convert regular address to witness address.  (split adrs later)
		wa, err := btcutil.NewAddressWitnessPubKeyHash(
			ts.Adrs[i].PkhAdr.ScriptAddress(), ts.Param)
		if err != nil {
			return hits, err
		}

		wPKscripts[i], err = txscript.PayToAddrScript(wa)
		if err != nil {
			return hits, err
		}
		aPKscripts[i], err = txscript.PayToAddrScript(ts.Adrs[i].PkhAdr)
		if err != nil {
			return hits, err
		}
	}

	cachedSha := tx.TxSha()
	// iterate through all outputs of this tx, see if we gain
	for i, out := range tx.TxOut {
		for j, ascr := range aPKscripts {
			// detect p2wpkh
			witBool := false
			if bytes.Equal(out.PkScript, wPKscripts[j]) {
				witBool = true
			}
			if bytes.Equal(out.PkScript, ascr) || witBool { // new utxo found
				var newu Utxo // create new utxo and copy into it
				newu.AtHeight = height
				newu.KeyIdx = ts.Adrs[j].KeyIdx
				newu.Value = out.Value
				newu.IsWit = witBool // copy witness version from pkscript
				var newop wire.OutPoint
				newop.Hash = cachedSha
				newop.Index = uint32(i)
				newu.Op = newop
				b, err := newu.ToBytes()
				if err != nil {
					return hits, err
				}
				nUtxoBytes = append(nUtxoBytes, b)
				hits++
				break // txos can match only 1 script
			}
		}
	}

	err = ts.StateDB.Update(func(btx *bolt.Tx) error {
		// get all 4 buckets
		duf := btx.Bucket(BKTUtxos)
		//		sta := btx.Bucket(BKTState)
		old := btx.Bucket(BKTStxos)
		txns := btx.Bucket(BKTTxns)
		if duf == nil || old == nil || txns == nil {
			return fmt.Errorf("error: db not initialized")
		}

		// iterate through duffel bag and look for matches
		// this makes us lose money, which is regrettable, but we need to know.
		for _, nOP := range spentOPs {
			v := duf.Get(nOP)
			if v != nil {
				hits++
				// do all this just to figure out value we lost
				x := make([]byte, len(nOP)+len(v))
				copy(x, nOP)
				copy(x[len(nOP):], v)
				lostTxo, err := UtxoFromBytes(x)
				if err != nil {
					return err
				}

				// after marking for deletion, save stxo to old bucket
				var st Stxo               // generate spent txo
				st.Utxo = lostTxo         // assign outpoint
				st.SpendHeight = height   // spent at height
				st.SpendTxid = cachedSha  // spent by txid
				stxb, err := st.ToBytes() // serialize
				if err != nil {
					return err
				}
				err = old.Put(nOP, stxb) // write nOP:v outpoint:stxo bytes
				if err != nil {
					return err
				}

				err = duf.Delete(nOP)
				if err != nil {
					return err
				}
			}
		}

		// done losing utxos, next gain utxos
		// next add all new utxos to db, this is quick as the work is above
		for _, ub := range nUtxoBytes {
			err = duf.Put(ub[:36], ub[36:])
			if err != nil {
				return err
			}
		}

		// if hits is nonzero it's a relevant tx and we should store it
		var buf bytes.Buffer
		tx.Serialize(&buf)
		err = txns.Put(cachedSha.Bytes(), buf.Bytes())
		if err != nil {
			return err
		}

		return nil
	})
	return hits, err
}
Example #29
0
// txToOutputs creates a signed transaction which includes each output from
// outputs.  Previous outputs to reedeem are chosen from the passed account's
// UTXO set and minconf policy. An additional output may be added to return
// change to the wallet.  An appropriate fee is included based on the wallet's
// current relay fee.  The wallet must be unlocked to create the transaction.
func (w *Wallet) txToOutputs(outputs []*wire.TxOut, account uint32, minconf int32) (*txauthor.AuthoredTx, error) {
	// Address manager must be unlocked to compose transaction.  Grab
	// the unlock if possible (to prevent future unlocks), or return the
	// error if already locked.
	heldUnlock, err := w.HoldUnlock()
	if err != nil {
		return nil, err
	}
	defer heldUnlock.Release()

	chainClient, err := w.requireChainClient()
	if err != nil {
		return nil, err
	}

	// Get current block's height and hash.
	bs, err := chainClient.BlockStamp()
	if err != nil {
		return nil, err
	}

	eligible, err := w.findEligibleOutputs(account, minconf, bs)
	if err != nil {
		return nil, err
	}

	inputSource := makeInputSource(eligible)
	changeSource := func() ([]byte, error) {
		// Derive the change output script.  As a hack to allow spending from
		// the imported account, change addresses are created from account 0.
		var changeAddr btcutil.Address
		if account == waddrmgr.ImportedAddrAccount {
			changeAddr, err = w.NewChangeAddress(0,
				waddrmgr.WitnessPubKey)
		} else {
			changeAddr, err = w.NewChangeAddress(account,
				waddrmgr.WitnessPubKey)
		}
		if err != nil {
			return nil, err
		}
		return txscript.PayToAddrScript(changeAddr)
	}
	tx, err := txauthor.NewUnsignedTransaction(outputs, w.RelayFee(),
		inputSource, changeSource)
	if err != nil {
		return nil, err
	}

	// Randomize change position, if change exists, before signing.  This
	// doesn't affect the serialize size, so the change amount will still be
	// valid.
	if tx.ChangeIndex >= 0 {
		tx.RandomizeChangePosition()
	}

	err = tx.AddAllInputScripts(secretSource{w.Manager})
	if err != nil {
		return nil, err
	}

	err = validateMsgTx(tx.Tx, tx.PrevScripts, tx.PrevInputValues)
	if err != nil {
		return nil, err
	}

	if tx.ChangeIndex >= 0 && account == waddrmgr.ImportedAddrAccount {
		changeAmount := btcutil.Amount(tx.Tx.TxOut[tx.ChangeIndex].Value)
		log.Warnf("Spend from imported account produced change: moving"+
			" %v from imported account into default account.", changeAmount)
	}

	return tx, nil
}
Example #30
-1
// createSweepTx creates a final sweeping transaction with all witnesses
// inplace for all inputs. The created transaction has a single output sending
// all the funds back to the source wallet.
func (u *utxoNursery) createSweepTx(matureOutputs []*immatureOutput) (*wire.MsgTx, error) {
	sweepAddr, err := u.wallet.NewAddress(lnwallet.WitnessPubKey, false)
	if err != nil {
		return nil, err
	}
	pkScript, err := txscript.PayToAddrScript(sweepAddr)
	if err != nil {
		return nil, err
	}

	var totalSum btcutil.Amount
	for _, o := range matureOutputs {
		totalSum += o.amt
	}

	sweepTx := wire.NewMsgTx()
	sweepTx.Version = 2
	sweepTx.AddTxOut(&wire.TxOut{
		PkScript: pkScript,
		Value:    int64(totalSum - 1000),
	})
	for _, utxo := range matureOutputs {
		sweepTx.AddTxIn(&wire.TxIn{
			PreviousOutPoint: utxo.outPoint,
			// TODO(roasbeef): assumes pure block delays
			Sequence: utxo.blocksToMaturity,
		})
	}

	// TODO(roasbeef): insert fee calculation
	//  * remove hardcoded fee above

	// With all the inputs in place, use each output's unique witness
	// function to generate the final witness required for spending.
	hashCache := txscript.NewTxSigHashes(sweepTx)
	for i, txIn := range sweepTx.TxIn {
		witness, err := matureOutputs[i].witnessFunc(sweepTx, hashCache, i)
		if err != nil {
			return nil, err
		}

		txIn.Witness = witness
	}

	return sweepTx, nil
}