func buildIter(lb, ub []float64) optim.Method { mask := make([]bool, len(ub)) for i := range mask { mask[i] = lb[i] < ub[i] } n := 30 + 1*len(lb) if *npar != 0 { n = *npar } else if n < 30 { n = 30 } fmt.Printf("swarming with %v particles\n", n) ev := optim.ParallelEvaler{} if *addr == "" { ev.NConcurrent = *ncpu } pop := swarm.NewPopulationRand(n, lb, ub) swarm := swarm.New( pop, swarm.Evaler(ev), swarm.VmaxBounds(lb, ub), swarm.DB(db), ) if *swarmonly { return swarm } else { return pattern.New(pop[0].Point, pattern.ResetStep(.01, 1.0), pattern.NsuccessGrow(4), pattern.Evaler(ev), pattern.PollRandNMask(n, mask), pattern.SearchMethod(swarm, pattern.Share), pattern.DB(db), ) } }
func loadIter(lb, ub []float64, iter int) (md optim.Method, initstep float64) { _, err := db.Exec("CREATE INDEX IF NOT EXISTS points_posid ON points (posid ASC);") check(err) query := "SELECT pt.dim,pt.val,pi.val FROM points AS pt JOIN patterninfo AS pi ON pi.posid=pt.posid WHERE pi.iter=?;" initPoint := loadPoint(query, iter) row := db.QueryRow("SELECT step FROM patterninfo WHERE iter=?;", iter) err = row.Scan(&initstep) check(err) mask := make([]bool, len(ub)) for i := range mask { mask[i] = lb[i] < ub[i] } row = db.QueryRow("SELECT COUNT(*) FROM swarmparticles WHERE iter=?;", iter) var npar int err = row.Scan(&npar) check(err) pop := make(swarm.Population, npar) for i := 0; i < npar; i++ { query := "SELECT pt.dim,pt.val,s.val FROM points AS pt JOIN swarmparticles AS s ON s.posid=pt.posid WHERE s.iter=? AND s.particle=?;" pt := loadPoint(query, iter, i) query = "SELECT pt.dim,pt.val,s.best FROM points AS pt JOIN swarmparticlesbest AS s ON s.posid=pt.posid WHERE s.iter=? AND s.particle=?;" best := loadPoint(query, iter, i) query = "SELECT pt.dim,pt.val,0 FROM points AS pt JOIN swarmparticles AS s ON s.velid=pt.posid WHERE s.iter=? AND s.particle=?;" vel := loadPoint(query, iter, i) par := &swarm.Particle{ Id: i, Point: pt, Best: best, Vel: vel.Pos, } pop[i] = par //fmt.Printf("DEBUG par %v: pos[10]=%v obj=%v bestpos[10]=%v bestobj=%v\n", i, par.Pos[10], par.Val, par.Best.Pos[10], par.Best.Val) } fmt.Printf("swarming with %v particles\n", len(pop)) ev := optim.ParallelEvaler{} if *addr == "" { ev.NConcurrent = runtime.NumCPU() } swarm := swarm.New( pop, swarm.Evaler(ev), swarm.VmaxBounds(lb, ub), swarm.DB(db), swarm.InitIter(iter+1), ) return pattern.New(initPoint, pattern.ResetStep(.01, 1.0), pattern.NsuccessGrow(4), pattern.Evaler(ev), pattern.PollRandNMask(npar, mask), pattern.SearchMethod(swarm, pattern.Share), pattern.DB(db), ), initstep }