func BenchmarkBaggingRandomForestPredict(t *testing.B) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { t.Fatal("Unable to parse CSV to instances: %s", err.Error()) } rand.Seed(time.Now().UnixNano()) filt := filters.NewChiMergeFilter(inst, 0.90) for _, a := range base.NonClassFloatAttributes(inst) { filt.AddAttribute(a) } filt.Train() instf := base.NewLazilyFilteredInstances(inst, filt) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } rf.Fit(instf) t.ResetTimer() for i := 0; i < 20; i++ { rf.Predict(instf) } }
func TestRandomForest1(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } rand.Seed(time.Now().UnixNano()) insts := base.InstancesTrainTestSplit(inst, 0.6) filt := filters.NewChiMergeFilter(inst, 0.90) filt.AddAllNumericAttributes() filt.Build() filt.Run(insts[1]) filt.Run(insts[0]) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } rf.Fit(insts[0]) fmt.Println(rf) predictions := rf.Predict(insts[1]) fmt.Println(predictions) confusionMat := eval.GetConfusionMatrix(insts[1], predictions) fmt.Println(confusionMat) fmt.Println(eval.GetMacroPrecision(confusionMat)) fmt.Println(eval.GetMacroRecall(confusionMat)) fmt.Println(eval.GetSummary(confusionMat)) }
func TestRandomForest1(testEnv *testing.T) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } rand.Seed(time.Now().UnixNano()) trainData, testData := base.InstancesTrainTestSplit(inst, 0.6) filt := filters.NewChiMergeFilter(inst, 0.90) for _, a := range base.NonClassFloatAttributes(inst) { filt.AddAttribute(a) } filt.Train() trainDataf := base.NewLazilyFilteredInstances(trainData, filt) testDataf := base.NewLazilyFilteredInstances(testData, filt) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } rf.Fit(trainDataf) fmt.Println(rf) predictions := rf.Predict(testDataf) fmt.Println(predictions) confusionMat := eval.GetConfusionMatrix(testDataf, predictions) fmt.Println(confusionMat) fmt.Println(eval.GetMacroPrecision(confusionMat)) fmt.Println(eval.GetMacroRecall(confusionMat)) fmt.Println(eval.GetSummary(confusionMat)) }
func main() { var tree base.Classifier rand.Seed(time.Now().UTC().UnixNano()) // Load in the iris dataset iris, err := base.ParseCSVToInstances("../datasets/iris_headers.csv", true) if err != nil { panic(err) } // Discretise the iris dataset with Chi-Merge filt := filters.NewChiMergeFilter(iris, 0.99) filt.AddAllNumericAttributes() filt.Build() filt.Run(iris) // Create a 60-40 training-test split insts := base.InstancesTrainTestSplit(iris, 0.60) // // First up, use ID3 // tree = trees.NewID3DecisionTree(0.6) // (Parameter controls train-prune split.) // Train the ID3 tree tree.Fit(insts[0]) // Generate predictions predictions := tree.Predict(insts[1]) // Evaluate fmt.Println("ID3 Performance") cf := eval.GetConfusionMatrix(insts[1], predictions) fmt.Println(eval.GetSummary(cf)) // // Next up, Random Trees // // Consider two randomly-chosen attributes tree = trees.NewRandomTree(2) tree.Fit(insts[0]) predictions = tree.Predict(insts[1]) fmt.Println("RandomTree Performance") cf = eval.GetConfusionMatrix(insts[1], predictions) fmt.Println(eval.GetSummary(cf)) // // Finally, Random Forests // tree = ensemble.NewRandomForest(100, 3) tree.Fit(insts[0]) predictions = tree.Predict(insts[1]) fmt.Println("RandomForest Performance") cf = eval.GetConfusionMatrix(insts[1], predictions) fmt.Println(eval.GetSummary(cf)) }
func BenchmarkBaggingRandomForestFit(testEnv *testing.B) { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) if err != nil { panic(err) } rand.Seed(time.Now().UnixNano()) filt := filters.NewChiMergeFilter(inst, 0.90) filt.AddAllNumericAttributes() filt.Build() filt.Run(inst) rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } testEnv.ResetTimer() for i := 0; i < 20; i++ { rf.Fit(inst) } }
func TestBaggedModelRandomForest(t *testing.T) { Convey("Given data", t, func() { inst, err := base.ParseCSVToInstances("../examples/datasets/iris_headers.csv", true) So(err, ShouldBeNil) Convey("Splitting the data into training and test data", func() { trainData, testData := base.InstancesTrainTestSplit(inst, 0.6) Convey("Filtering the split datasets", func() { rand.Seed(time.Now().UnixNano()) filt := filters.NewChiMergeFilter(inst, 0.90) for _, a := range base.NonClassFloatAttributes(inst) { filt.AddAttribute(a) } filt.Train() trainDataf := base.NewLazilyFilteredInstances(trainData, filt) testDataf := base.NewLazilyFilteredInstances(testData, filt) Convey("Fitting and Predicting with a Bagged Model of 10 Random Trees", func() { rf := new(BaggedModel) for i := 0; i < 10; i++ { rf.AddModel(trees.NewRandomTree(2)) } rf.Fit(trainDataf) predictions := rf.Predict(testDataf) confusionMat, err := evaluation.GetConfusionMatrix(testDataf, predictions) So(err, ShouldBeNil) Convey("Predictions are somewhat accurate", func() { So(evaluation.GetAccuracy(confusionMat), ShouldBeGreaterThan, 0.5) }) }) }) }) }) }
func main() { var tree base.Classifier rand.Seed(44111342) // Load in the iris dataset iris, err := base.ParseCSVToInstances("../datasets/iris_headers.csv", true) if err != nil { panic(err) } // Discretise the iris dataset with Chi-Merge filt := filters.NewChiMergeFilter(iris, 0.999) for _, a := range base.NonClassFloatAttributes(iris) { filt.AddAttribute(a) } filt.Train() irisf := base.NewLazilyFilteredInstances(iris, filt) // Create a 60-40 training-test split trainData, testData := base.InstancesTrainTestSplit(irisf, 0.60) // // First up, use ID3 // tree = trees.NewID3DecisionTree(0.6) // (Parameter controls train-prune split.) // Train the ID3 tree err = tree.Fit(trainData) if err != nil { panic(err) } // Generate predictions predictions, err := tree.Predict(testData) if err != nil { panic(err) } // Evaluate fmt.Println("ID3 Performance (information gain)") cf, err := evaluation.GetConfusionMatrix(testData, predictions) if err != nil { panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error())) } fmt.Println(evaluation.GetSummary(cf)) tree = trees.NewID3DecisionTreeFromRule(0.6, new(trees.InformationGainRatioRuleGenerator)) // (Parameter controls train-prune split.) // Train the ID3 tree err = tree.Fit(trainData) if err != nil { panic(err) } // Generate predictions predictions, err = tree.Predict(testData) if err != nil { panic(err) } // Evaluate fmt.Println("ID3 Performance (information gain ratio)") cf, err = evaluation.GetConfusionMatrix(testData, predictions) if err != nil { panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error())) } fmt.Println(evaluation.GetSummary(cf)) tree = trees.NewID3DecisionTreeFromRule(0.6, new(trees.GiniCoefficientRuleGenerator)) // (Parameter controls train-prune split.) // Train the ID3 tree err = tree.Fit(trainData) if err != nil { panic(err) } // Generate predictions predictions, err = tree.Predict(testData) if err != nil { panic(err) } // Evaluate fmt.Println("ID3 Performance (gini index generator)") cf, err = evaluation.GetConfusionMatrix(testData, predictions) if err != nil { panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error())) } fmt.Println(evaluation.GetSummary(cf)) // // Next up, Random Trees // // Consider two randomly-chosen attributes tree = trees.NewRandomTree(2) err = tree.Fit(testData) if err != nil { panic(err) } predictions, err = tree.Predict(testData) if err != nil { panic(err) } fmt.Println("RandomTree Performance") cf, err = evaluation.GetConfusionMatrix(testData, predictions) if err != nil { panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error())) } fmt.Println(evaluation.GetSummary(cf)) // // Finally, Random Forests // tree = ensemble.NewRandomForest(70, 3) err = tree.Fit(trainData) if err != nil { panic(err) } predictions, err = tree.Predict(testData) if err != nil { panic(err) } fmt.Println("RandomForest Performance") cf, err = evaluation.GetConfusionMatrix(testData, predictions) if err != nil { panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error())) } fmt.Println(evaluation.GetSummary(cf)) }