// PositionRonVondrak computes the apparent position of an object using // the Ron-Vondrák expression for aberration. // // Position is computed for equatorial coordinates in eqFrom, considering // proper motion, aberration, precession, and nutation. Result is in // eqTo. EqFrom and eqTo must be non-nil, but may point to the same struct. // // Note the Ron-Vondrák expression is only valid for the epoch J2000. // EqFrom must be coordinates at epoch J2000. func PositionRonVondrak(eqFrom, eqTo *coord.Equatorial, epochTo float64, mα sexa.HourAngle, mδ sexa.Angle) *coord.Equatorial { t := epochTo - 2000 eqTo.RA = eqFrom.RA + mα.Rad()*t eqTo.Dec = eqFrom.Dec + mδ.Rad()*t jd := base.JulianYearToJDE(epochTo) Δα, Δδ := AberrationRonVondrak(eqTo.RA, eqTo.Dec, jd) eqTo.RA += Δα eqTo.Dec += Δδ precess.Position(eqTo, eqTo, 2000, epochTo, 0, 0) Δα1, Δδ1 := Nutation(eqTo.RA, eqTo.Dec, jd) eqTo.RA += Δα1 eqTo.Dec += Δδ1 return eqTo }
// PositionRonVondrak computes the apparent position of an object using // the Ron-Vondrák expression for aberration. // // Position is computed for equatorial coordinates in eqFrom, considering // proper motion, aberration, precession, and nutation. Result is in // eqTo. EqFrom and eqTo must be non-nil, but may point to the same struct. // // Note the Ron-Vondrák expression is only valid for the epoch J2000. // EqFrom must be coordinates at epoch J2000. func PositionRonVondrak(eqFrom, eqTo *coord.Equatorial, epochTo float64, mα unit.HourAngle, mδ unit.Angle) *coord.Equatorial { t := epochTo - 2000 eqTo.RA = eqFrom.RA.Add(mα.Mul(t)) eqTo.Dec = eqFrom.Dec + mδ.Mul(t) jd := base.JulianYearToJDE(epochTo) Δα, Δδ := AberrationRonVondrak(eqTo.RA, eqTo.Dec, jd) eqTo.RA = eqTo.RA.Add(Δα) eqTo.Dec += Δδ precess.Position(eqTo, eqTo, 2000, epochTo, 0, 0) Δα1, Δδ1 := Nutation(eqTo.RA, eqTo.Dec, jd) eqTo.RA = eqTo.RA.Add(Δα1) eqTo.Dec += Δδ1 return eqTo }
// ApproxPosition uses ApproxAnnualPrecession to compute a simple and quick // precession while still considering proper motion. // // Both eqFrom and eqTo must be non-nil, although they may point to the same // struct. EqTo is returned for convenience. func ApproxPosition(eqFrom, eqTo *coord.Equatorial, epochFrom, epochTo float64, mα base.HourAngle, mδ base.Angle) *coord.Equatorial { Δα, Δδ := ApproxAnnualPrecession(eqFrom, epochFrom, epochTo) dy := epochTo - epochFrom eqTo.RA = eqFrom.RA + (Δα+mα).Rad()*dy eqTo.Dec = eqFrom.Dec + (Δδ+mδ).Rad()*dy return eqTo }
// Position precesses equatorial coordinates from one epoch to another, // including proper motions. // // If proper motions are not to be considered or are not applicable, pass 0, 0 // for mα, mδ // // Both eqFrom and eqTo must be non-nil, although they may point to the same // struct. EqTo is returned for convenience. func Position(eqFrom, eqTo *coord.Equatorial, epochFrom, epochTo float64, mα base.HourAngle, mδ base.Angle) *coord.Equatorial { p := NewPrecessor(epochFrom, epochTo) t := epochTo - epochFrom eqTo.RA = eqFrom.RA + mα.Rad()*t eqTo.Dec = eqFrom.Dec + mδ.Rad()*t return p.Precess(eqTo, eqTo) }
// ApproxPosition uses ApproxAnnualPrecession to compute a simple and quick // precession while still considering proper motion. // // Both eqFrom and eqTo must be non-nil, although they may point to the same // struct. EqTo is returned for convenience. func ApproxPosition(eqFrom, eqTo *coord.Equatorial, epochFrom, epochTo float64, mα unit.HourAngle, mδ unit.Angle) *coord.Equatorial { Δα, Δδ := ApproxAnnualPrecession(eqFrom, epochFrom, epochTo) dy := epochTo - epochFrom eqTo.RA = eqFrom.RA.Add((Δα + mα).Mul(dy)) eqTo.Dec = eqFrom.Dec + (Δδ + mδ).Mul(dy) return eqTo }
// Position precesses equatorial coordinates from one epoch to another, // including proper motions. // // If proper motions are not to be considered or are not applicable, pass 0, 0 // for mα, mδ // // Both eqFrom and eqTo must be non-nil, although they may point to the same // struct. EqTo is returned for convenience. func Position(eqFrom, eqTo *coord.Equatorial, epochFrom, epochTo float64, mα unit.HourAngle, mδ unit.Angle) *coord.Equatorial { p := NewPrecessor(epochFrom, epochTo) t := epochTo - epochFrom eqTo.RA = unit.RAFromRad(eqFrom.RA.Rad() + mα.Rad()*t) eqTo.Dec = eqFrom.Dec + mδ*unit.Angle(t) return p.Precess(eqTo, eqTo) }
// Position computes the apparent position of an object. // // Position is computed for equatorial coordinates in eqFrom, considering // proper motion, precession, nutation, and aberration. Result is in // eqTo. EqFrom and eqTo must be non-nil, but may point to the same struct. func Position(eqFrom, eqTo *coord.Equatorial, epochFrom, epochTo float64, mα sexa.HourAngle, mδ sexa.Angle) *coord.Equatorial { precess.Position(eqFrom, eqTo, epochFrom, epochTo, mα, mδ) jd := base.JulianYearToJDE(epochTo) Δα1, Δδ1 := Nutation(eqTo.RA, eqTo.Dec, jd) Δα2, Δδ2 := Aberration(eqTo.RA, eqTo.Dec, jd) eqTo.RA += Δα1 + Δα2 eqTo.Dec += Δδ1 + Δδ2 return eqTo }
// Precess precesses coordinates eqFrom, leaving result in eqTo. // // The same struct may be used for eqFrom and eqTo. // EqTo is returned for convenience. func (p *Precessor) Precess(eqFrom, eqTo *coord.Equatorial) *coord.Equatorial { // (21.4) p. 134 sδ, cδ := math.Sincos(eqFrom.Dec) sαζ, cαζ := math.Sincos(eqFrom.RA + p.ζ) A := cδ * sαζ B := p.cθ*cδ*cαζ - p.sθ*sδ C := p.sθ*cδ*cαζ + p.cθ*sδ eqTo.RA = math.Atan2(A, B) + p.z if C < base.CosSmallAngle { eqTo.Dec = math.Asin(C) } else { eqTo.Dec = math.Acos(math.Hypot(A, B)) // near pole } return eqTo }
// ProperMotion3D takes the 3D equatorial coordinates of an object // at one epoch and computes its coordinates at a new epoch, considering // proper motion and radial velocity. // // Radial distance (r) must be in parsecs, radial velocitiy (mr) in // parsecs per year. // // Both eqFrom and eqTo must be non-nil, although they may point to the same // struct. EqTo is returned for convenience. func ProperMotion3D(eqFrom, eqTo *coord.Equatorial, epochFrom, epochTo, r, mr float64, mα base.HourAngle, mδ base.Angle) *coord.Equatorial { sα, cα := math.Sincos(eqFrom.RA) sδ, cδ := math.Sincos(eqFrom.Dec) x := r * cδ * cα y := r * cδ * sα z := r * sδ mrr := mr / r zmδ := z * mδ.Rad() mx := x*mrr - zmδ*cα - y*mα.Rad() my := y*mrr - zmδ*sα + x*mα.Rad() mz := z*mrr + r*mδ.Rad()*cδ t := epochTo - epochFrom xp := x + t*mx yp := y + t*my zp := z + t*mz eqTo.RA = math.Atan2(yp, xp) eqTo.Dec = math.Atan2(zp, math.Hypot(xp, yp)) return eqTo }