// Example_errBars draws points and error bars. func Example_errBars() *plot.Plot { type errPoints struct { plotter.XYs plotter.YErrors plotter.XErrors } rand.Seed(int64(0)) n := 15 data := errPoints{ plotter.XYs: randomPoints(n), plotter.YErrors: plotter.YErrors(randomError(n)), plotter.XErrors: plotter.XErrors(randomError(n)), } p, err := plot.New() if err != nil { panic(err) } scatter := plotter.NewScatter(data) scatter.Shape = plot.CrossGlyph{} p.Add(scatter, plotter.NewXErrorBars(data), plotter.NewYErrorBars(data)) p.Add(plotter.NewGlyphBoxes()) return p }
// Example_horizontalBoxPlots draws horizontal boxplots // with some labels on their points. func Example_horizontalBoxPlots() *plot.Plot { rand.Seed(int64(0)) n := 100 uniform := make(valueLabels, n) normal := make(valueLabels, n) expon := make(valueLabels, n) for i := 0; i < n; i++ { uniform[i].Value = rand.Float64() uniform[i].Label = fmt.Sprintf("%4.4f", uniform[i].Value) normal[i].Value = rand.NormFloat64() normal[i].Label = fmt.Sprintf("%4.4f", normal[i].Value) expon[i].Value = rand.ExpFloat64() expon[i].Label = fmt.Sprintf("%4.4f", expon[i].Value) } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Horizontal Box Plot" p.X.Label.Text = "plotter.Values" // Make boxes for our data and add them to the plot. uniBox := plotter.HorizBoxPlot{plotter.NewBoxPlot(vg.Points(20), 0, uniform)} uniLabels, err := uniBox.OutsideLabels(uniform) if err != nil { panic(err) } normBox := plotter.HorizBoxPlot{plotter.NewBoxPlot(vg.Points(20), 1, normal)} normLabels, err := normBox.OutsideLabels(normal) if err != nil { panic(err) } expBox := plotter.HorizBoxPlot{plotter.NewBoxPlot(vg.Points(20), 2, expon)} expLabels, err := expBox.OutsideLabels(expon) if err != nil { panic(err) } p.Add(uniBox, uniLabels, normBox, normLabels, expBox, expLabels) // Add a GlyphBox plotter for debugging. p.Add(plotter.NewGlyphBoxes()) // Set the Y axis of the plot to nominal with // the given names for y=0, y=1 and y=2. p.NominalY("Uniform\nDistribution", "Normal\nDistribution", "Exponential\nDistribution") return p }