func (d *decoder) decodeInterface(name string, o *hcl.Object, result reflect.Value) error {
	var set reflect.Value
	redecode := true

	switch o.Type {
	case hcl.ValueTypeObject:
		// If we're at the root or we're directly within a slice, then we
		// decode objects into map[string]interface{}, otherwise we decode
		// them into lists.
		if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
			var temp map[string]interface{}
			tempVal := reflect.ValueOf(temp)
			result := reflect.MakeMap(
				reflect.MapOf(
					reflect.TypeOf(""),
					tempVal.Type().Elem()))

			set = result
		} else {
			var temp []map[string]interface{}
			tempVal := reflect.ValueOf(temp)
			result := reflect.MakeSlice(
				reflect.SliceOf(tempVal.Type().Elem()), 0, int(o.Len()))
			set = result
		}
	case hcl.ValueTypeList:
		var temp []interface{}
		tempVal := reflect.ValueOf(temp)
		result := reflect.MakeSlice(
			reflect.SliceOf(tempVal.Type().Elem()), 0, 0)
		set = result
	case hcl.ValueTypeBool:
		var result bool
		set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
	case hcl.ValueTypeFloat:
		var result float64
		set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
	case hcl.ValueTypeInt:
		var result int
		set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
	case hcl.ValueTypeString:
		set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
	default:
		return fmt.Errorf(
			"%s: cannot decode into interface: %T",
			name, o)
	}

	// Set the result to what its supposed to be, then reset
	// result so we don't reflect into this method anymore.
	result.Set(set)

	if redecode {
		// Revisit the node so that we can use the newly instantiated
		// thing and populate it.
		if err := d.decode(name, o, result); err != nil {
			return err
		}
	}

	return nil
}
func loadProvisionersHcl(os *hclobj.Object, connInfo map[string]interface{}) ([]*Provisioner, error) {
	pos := make([]*hclobj.Object, 0, int(os.Len()))

	// Accumulate all the actual provisioner configuration objects. We
	// have to iterate twice here:
	//
	//  1. The first iteration is of the list of `provisioner` blocks.
	//  2. The second iteration is of the dictionary within the
	//      provisioner which will have only one element which is the
	//      type of provisioner to use along with tis config.
	//
	// In JSON it looks kind of like this:
	//
	//   [
	//     {
	//       "shell": {
	//         ...
	//       }
	//     }
	//   ]
	//
	for _, o1 := range os.Elem(false) {
		for _, o2 := range o1.Elem(true) {

			switch o1.Type {
			case hclobj.ValueTypeList:
				for _, o3 := range o2.Elem(true) {
					pos = append(pos, o3)
				}
			case hclobj.ValueTypeObject:
				pos = append(pos, o2)
			}
		}
	}

	// Short-circuit if there are no items
	if len(pos) == 0 {
		return nil, nil
	}

	result := make([]*Provisioner, 0, len(pos))
	for _, po := range pos {
		var config map[string]interface{}
		if err := hcl.DecodeObject(&config, po); err != nil {
			return nil, err
		}

		// Delete the "connection" section, handle seperately
		delete(config, "connection")

		rawConfig, err := NewRawConfig(config)
		if err != nil {
			return nil, err
		}

		// Check if we have a provisioner-level connection
		// block that overrides the resource-level
		var subConnInfo map[string]interface{}
		if o := po.Get("connection", false); o != nil {
			err := hcl.DecodeObject(&subConnInfo, o)
			if err != nil {
				return nil, err
			}
		}

		// Inherit from the resource connInfo any keys
		// that are not explicitly overriden.
		if connInfo != nil && subConnInfo != nil {
			for k, v := range connInfo {
				if _, ok := subConnInfo[k]; !ok {
					subConnInfo[k] = v
				}
			}
		} else if subConnInfo == nil {
			subConnInfo = connInfo
		}

		// Parse the connInfo
		connRaw, err := NewRawConfig(subConnInfo)
		if err != nil {
			return nil, err
		}

		result = append(result, &Provisioner{
			Type:      po.Key,
			RawConfig: rawConfig,
			ConnInfo:  connRaw,
		})
	}

	return result, nil
}