func (p *exporter) value(x constant.Value) { if trace { p.tracef("value { ") defer p.tracef("} ") } switch kind := x.Kind(); kind { case constant.Bool: tag := falseTag if constant.BoolVal(x) { tag = trueTag } p.int(tag) case constant.Int: if i, ok := constant.Int64Val(x); ok { p.int(int64Tag) p.int64(i) return } p.int(floatTag) p.float(x) case constant.Float: p.int(fractionTag) p.fraction(x) case constant.Complex: p.int(complexTag) p.fraction(constant.Real(x)) p.fraction(constant.Imag(x)) case constant.String: p.int(stringTag) p.string(constant.StringVal(x)) default: panic(fmt.Sprintf("unexpected value kind %d", kind)) } }
// goVal returns the Go value for val, or nil. func goVal(val constant.Value) interface{} { // val should exist, but be conservative and check if val == nil { return nil } // Match implementation restriction of other compilers. // gc only checks duplicates for integer, floating-point // and string values, so only create Go values for these // types. switch val.Kind() { case constant.Int: if x, ok := constant.Int64Val(val); ok { return x } if x, ok := constant.Uint64Val(val); ok { return x } case constant.Float: if x, ok := constant.Float64Val(val); ok { return x } case constant.String: return constant.StringVal(val) } return nil }
// constValString emulates Go 1.6's go/constant.ExactString well enough // to make the tests pass. This is just a stopgap until we throw away // all the *15.go files. func constValString(v exact.Value) string { if v.Kind() == exact.Float { f, _ := exact.Float64Val(v) return fmt.Sprintf("%g", f) } return v.String() }
// valString returns the string representation for the value v. // Setting floatFmt forces an integer value to be formatted in // normalized floating-point format. // TODO(gri) Move this code into package exact. func valString(v exact.Value, floatFmt bool) string { switch v.Kind() { case exact.Int: if floatFmt { return floatString(v) } case exact.Float: return floatString(v) case exact.Complex: re := exact.Real(v) im := exact.Imag(v) var s string if exact.Sign(re) != 0 { s = floatString(re) if exact.Sign(im) >= 0 { s += " + " } else { s += " - " im = exact.UnaryOp(token.SUB, im, 0) // negate im } } // im != 0, otherwise v would be exact.Int or exact.Float return s + floatString(im) + "i" } return v.String() }
// Helper function to adjust go1.5 numeric go/constant formatting. // Can be removed once we give up compatibility with go1.5. func constValString(v exact.Value) string { if v.Kind() == exact.Float { // In go1.5, go/constant floating-point values are printed // as fractions. Make them appear as floating-point numbers. f, _ := exact.Float64Val(v) return fmt.Sprintf("%g", f) } return v.String() }
func (p *exporter) value(x constant.Value) { if trace { p.tracef("= ") } switch x.Kind() { case constant.Bool: tag := falseTag if constant.BoolVal(x) { tag = trueTag } p.tag(tag) case constant.Int: if v, exact := constant.Int64Val(x); exact { // common case: x fits into an int64 - use compact encoding p.tag(int64Tag) p.int64(v) return } // uncommon case: large x - use float encoding // (powers of 2 will be encoded efficiently with exponent) p.tag(floatTag) p.float(constant.ToFloat(x)) case constant.Float: p.tag(floatTag) p.float(x) case constant.Complex: p.tag(complexTag) p.float(constant.Real(x)) p.float(constant.Imag(x)) case constant.String: p.tag(stringTag) p.string(constant.StringVal(x)) case constant.Unknown: // package contains type errors p.tag(unknownTag) default: log.Fatalf("gcimporter: unexpected value %v (%T)", x, x) } }
func newConstant(val constant.Value, mem memoryReadWriter) *Variable { v := &Variable{Value: val, mem: mem, loaded: true} switch val.Kind() { case constant.Int: v.Kind = reflect.Int case constant.Float: v.Kind = reflect.Float64 case constant.Bool: v.Kind = reflect.Bool case constant.Complex: v.Kind = reflect.Complex128 case constant.String: v.Kind = reflect.String v.Len = int64(len(constant.StringVal(val))) } return v }
func (p *exporter) float(x constant.Value) { if x.Kind() != constant.Float { log.Fatalf("gcimporter: unexpected constant %v, want float", x) } // extract sign (there is no -0) sign := constant.Sign(x) if sign == 0 { // x == 0 p.int(0) return } // x != 0 var f big.Float if v, exact := constant.Float64Val(x); exact { // float64 f.SetFloat64(v) } else if num, denom := constant.Num(x), constant.Denom(x); num.Kind() == constant.Int { // TODO(gri): add big.Rat accessor to constant.Value. r := valueToRat(num) f.SetRat(r.Quo(r, valueToRat(denom))) } else { // Value too large to represent as a fraction => inaccessible. // TODO(gri): add big.Float accessor to constant.Value. f.SetFloat64(math.MaxFloat64) // FIXME } // extract exponent such that 0.5 <= m < 1.0 var m big.Float exp := f.MantExp(&m) // extract mantissa as *big.Int // - set exponent large enough so mant satisfies mant.IsInt() // - get *big.Int from mant m.SetMantExp(&m, int(m.MinPrec())) mant, acc := m.Int(nil) if acc != big.Exact { log.Fatalf("gcimporter: internal error") } p.int(sign) p.int(exp) p.string(string(mant.Bytes())) }
func (c *converter) convertConstantValue(v goconstant.Value) constant.Value { if v == nil { return nil } if v, ok := c.converted[v]; ok { return v.(constant.Value) } var ret constant.Value switch v.Kind() { case goconstant.Bool: ret = constant.MakeBool(goconstant.BoolVal(v)) case goconstant.String: ret = constant.MakeString(goconstant.StringVal(v)) case goconstant.Int: ret = constant.MakeFromLiteral(v.String(), token.INT, 0) case goconstant.Float: ret = constant.MakeFromLiteral(v.String(), token.FLOAT, 0) case goconstant.Complex: ret = constant.MakeFromLiteral(v.String(), token.IMAG, 0) } c.converted[v] = ret return ret }
func (check *Checker) shift(x, y *operand, e *ast.BinaryExpr, op token.Token) { untypedx := isUntyped(x.typ) var xval constant.Value if x.mode == constant_ { xval = constant.ToInt(x.val) } if isInteger(x.typ) || untypedx && xval != nil && xval.Kind() == constant.Int { // The lhs is of integer type or an untyped constant representable // as an integer. Nothing to do. } else { // shift has no chance check.invalidOp(x.pos(), "shifted operand %s must be integer", x) x.mode = invalid return } // spec: "The right operand in a shift expression must have unsigned // integer type or be an untyped constant that can be converted to // unsigned integer type." switch { case isUnsigned(y.typ): // nothing to do case isUntyped(y.typ): check.convertUntyped(y, Typ[UntypedInt]) if y.mode == invalid { x.mode = invalid return } default: check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y) x.mode = invalid return } if x.mode == constant_ { if y.mode == constant_ { // rhs must be an integer value yval := constant.ToInt(y.val) if yval.Kind() != constant.Int { check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y) x.mode = invalid return } // rhs must be within reasonable bounds const shiftBound = 1023 - 1 + 52 // so we can express smallestFloat64 s, ok := constant.Uint64Val(yval) if !ok || s > shiftBound { check.invalidOp(y.pos(), "invalid shift count %s", y) x.mode = invalid return } // The lhs is representable as an integer but may not be an integer // (e.g., 2.0, an untyped float) - this can only happen for untyped // non-integer numeric constants. Correct the type so that the shift // result is of integer type. if !isInteger(x.typ) { x.typ = Typ[UntypedInt] } // x is a constant so xval != nil and it must be of Int kind. x.val = constant.Shift(xval, op, uint(s)) // Typed constants must be representable in // their type after each constant operation. if isTyped(x.typ) { if e != nil { x.expr = e // for better error message } check.representable(x, x.typ.Underlying().(*Basic)) } return } // non-constant shift with constant lhs if untypedx { // spec: "If the left operand of a non-constant shift // expression is an untyped constant, the type of the // constant is what it would be if the shift expression // were replaced by its left operand alone.". // // Delay operand checking until we know the final type // by marking the lhs expression as lhs shift operand. // // Usually (in correct programs), the lhs expression // is in the untyped map. However, it is possible to // create incorrect programs where the same expression // is evaluated twice (via a declaration cycle) such // that the lhs expression type is determined in the // first round and thus deleted from the map, and then // not found in the second round (double insertion of // the same expr node still just leads to one entry for // that node, and it can only be deleted once). // Be cautious and check for presence of entry. // Example: var e, f = int(1<<""[f]) // issue 11347 if info, found := check.untyped[x.expr]; found { info.isLhs = true check.untyped[x.expr] = info } // keep x's type x.mode = value return } } // constant rhs must be >= 0 if y.mode == constant_ && constant.Sign(y.val) < 0 { check.invalidOp(y.pos(), "shift count %s must not be negative", y) } // non-constant shift - lhs must be an integer if !isInteger(x.typ) { check.invalidOp(x.pos(), "shifted operand %s must be integer", x) x.mode = invalid return } x.mode = value }
// representableConst reports whether x can be represented as // value of the given basic type and for the configuration // provided (only needed for int/uint sizes). // // If rounded != nil, *rounded is set to the rounded value of x for // representable floating-point and complex values, and to an Int // value for integer values; it is left alone otherwise. // It is ok to provide the addressof the first argument for rounded. func representableConst(x constant.Value, conf *Config, typ *Basic, rounded *constant.Value) bool { if x.Kind() == constant.Unknown { return true // avoid follow-up errors } switch { case isInteger(typ): x := constant.ToInt(x) if x.Kind() != constant.Int { return false } if rounded != nil { *rounded = x } if x, ok := constant.Int64Val(x); ok { switch typ.kind { case Int: var s = uint(conf.sizeof(typ)) * 8 return int64(-1)<<(s-1) <= x && x <= int64(1)<<(s-1)-1 case Int8: const s = 8 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 case Int16: const s = 16 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 case Int32: const s = 32 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 case Int64, UntypedInt: return true case Uint, Uintptr: if s := uint(conf.sizeof(typ)) * 8; s < 64 { return 0 <= x && x <= int64(1)<<s-1 } return 0 <= x case Uint8: const s = 8 return 0 <= x && x <= 1<<s-1 case Uint16: const s = 16 return 0 <= x && x <= 1<<s-1 case Uint32: const s = 32 return 0 <= x && x <= 1<<s-1 case Uint64: return 0 <= x default: unreachable() } } // x does not fit into int64 switch n := constant.BitLen(x); typ.kind { case Uint, Uintptr: var s = uint(conf.sizeof(typ)) * 8 return constant.Sign(x) >= 0 && n <= int(s) case Uint64: return constant.Sign(x) >= 0 && n <= 64 case UntypedInt: return true } case isFloat(typ): x := constant.ToFloat(x) if x.Kind() != constant.Float { return false } switch typ.kind { case Float32: if rounded == nil { return fitsFloat32(x) } r := roundFloat32(x) if r != nil { *rounded = r return true } case Float64: if rounded == nil { return fitsFloat64(x) } r := roundFloat64(x) if r != nil { *rounded = r return true } case UntypedFloat: return true default: unreachable() } case isComplex(typ): x := constant.ToComplex(x) if x.Kind() != constant.Complex { return false } switch typ.kind { case Complex64: if rounded == nil { return fitsFloat32(constant.Real(x)) && fitsFloat32(constant.Imag(x)) } re := roundFloat32(constant.Real(x)) im := roundFloat32(constant.Imag(x)) if re != nil && im != nil { *rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im)) return true } case Complex128: if rounded == nil { return fitsFloat64(constant.Real(x)) && fitsFloat64(constant.Imag(x)) } re := roundFloat64(constant.Real(x)) im := roundFloat64(constant.Imag(x)) if re != nil && im != nil { *rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im)) return true } case UntypedComplex: return true default: unreachable() } case isString(typ): return x.Kind() == constant.String case isBoolean(typ): return x.Kind() == constant.Bool } return false }
// representableConst reports whether x can be represented as // value of the given basic type kind and for the configuration // provided (only needed for int/uint sizes). // // If rounded != nil, *rounded is set to the rounded value of x for // representable floating-point values; it is left alone otherwise. // It is ok to provide the addressof the first argument for rounded. func representableConst(x constant.Value, conf *Config, as BasicKind, rounded *constant.Value) bool { switch x.Kind() { case constant.Unknown: return true case constant.Bool: return as == Bool || as == UntypedBool case constant.Int: if x, ok := constant.Int64Val(x); ok { switch as { case Int: var s = uint(conf.sizeof(Typ[as])) * 8 return int64(-1)<<(s-1) <= x && x <= int64(1)<<(s-1)-1 case Int8: const s = 8 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 case Int16: const s = 16 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 case Int32: const s = 32 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 case Int64: return true case Uint, Uintptr: if s := uint(conf.sizeof(Typ[as])) * 8; s < 64 { return 0 <= x && x <= int64(1)<<s-1 } return 0 <= x case Uint8: const s = 8 return 0 <= x && x <= 1<<s-1 case Uint16: const s = 16 return 0 <= x && x <= 1<<s-1 case Uint32: const s = 32 return 0 <= x && x <= 1<<s-1 case Uint64: return 0 <= x case Float32, Float64, Complex64, Complex128, UntypedInt, UntypedFloat, UntypedComplex: return true } } n := constant.BitLen(x) switch as { case Uint, Uintptr: var s = uint(conf.sizeof(Typ[as])) * 8 return constant.Sign(x) >= 0 && n <= int(s) case Uint64: return constant.Sign(x) >= 0 && n <= 64 case Float32, Complex64: if rounded == nil { return fitsFloat32(x) } r := roundFloat32(x) if r != nil { *rounded = r return true } case Float64, Complex128: if rounded == nil { return fitsFloat64(x) } r := roundFloat64(x) if r != nil { *rounded = r return true } case UntypedInt, UntypedFloat, UntypedComplex: return true } case constant.Float: switch as { case Float32, Complex64: if rounded == nil { return fitsFloat32(x) } r := roundFloat32(x) if r != nil { *rounded = r return true } case Float64, Complex128: if rounded == nil { return fitsFloat64(x) } r := roundFloat64(x) if r != nil { *rounded = r return true } case UntypedFloat, UntypedComplex: return true } case constant.Complex: switch as { case Complex64: if rounded == nil { return fitsFloat32(constant.Real(x)) && fitsFloat32(constant.Imag(x)) } re := roundFloat32(constant.Real(x)) im := roundFloat32(constant.Imag(x)) if re != nil && im != nil { *rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im)) return true } case Complex128: if rounded == nil { return fitsFloat64(constant.Real(x)) && fitsFloat64(constant.Imag(x)) } re := roundFloat64(constant.Real(x)) im := roundFloat64(constant.Imag(x)) if re != nil && im != nil { *rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im)) return true } case UntypedComplex: return true } case constant.String: return as == String || as == UntypedString default: unreachable() } return false }