Example #1
0
File: debug.go Project: hinike/llgo
func (d *DIBuilder) descriptorInterface(t *types.Interface, name string) llvm.Value {
	ifaceStruct := types.NewStruct([]*types.Var{
		types.NewVar(0, nil, "type", types.NewPointer(types.Typ[types.Uint8])),
		types.NewVar(0, nil, "data", types.NewPointer(types.Typ[types.Uint8])),
	}, nil)
	return d.typeDebugDescriptor(ifaceStruct, name)
}
Example #2
0
File: debug.go Project: hinike/llgo
func (d *DIBuilder) descriptorSlice(t *types.Slice, name string) llvm.Value {
	sliceStruct := types.NewStruct([]*types.Var{
		types.NewVar(0, nil, "ptr", types.NewPointer(t.Elem())),
		types.NewVar(0, nil, "len", types.Typ[types.Int]),
		types.NewVar(0, nil, "cap", types.Typ[types.Int]),
	}, nil)
	return d.typeDebugDescriptor(sliceStruct, name)
}
Example #3
0
File: debug.go Project: hinike/llgo
func (d *DIBuilder) descriptorSignature(t *types.Signature, name string) llvm.Value {
	// If there's a receiver change the receiver to an
	// additional (first) parameter, and take the value of
	// the resulting signature instead.
	if recv := t.Recv(); recv != nil {
		params := t.Params()
		paramvars := make([]*types.Var, int(params.Len()+1))
		paramvars[0] = recv
		for i := 0; i < int(params.Len()); i++ {
			paramvars[i+1] = params.At(i)
		}
		params = types.NewTuple(paramvars...)
		t := types.NewSignature(nil, nil, params, t.Results(), t.Variadic())
		return d.typeDebugDescriptor(t, name)
	}
	if dt, ok := d.types.At(t).(llvm.Value); ok {
		return dt
	}

	var returnType llvm.Value
	results := t.Results()
	switch n := results.Len(); n {
	case 0:
		returnType = d.DIType(nil) // void
	case 1:
		returnType = d.DIType(results.At(0).Type())
	default:
		fields := make([]*types.Var, results.Len())
		for i := range fields {
			f := results.At(i)
			// Structs may not have multiple fields
			// with the same name, excepting "_".
			if f.Name() == "" {
				f = types.NewVar(f.Pos(), f.Pkg(), "_", f.Type())
			}
			fields[i] = f
		}
		returnType = d.typeDebugDescriptor(types.NewStruct(fields, nil), "")
	}

	var paramTypes []llvm.Value
	params := t.Params()
	if params != nil && params.Len() > 0 {
		paramTypes = make([]llvm.Value, params.Len()+1)
		paramTypes[0] = returnType
		for i := range paramTypes[1:] {
			paramTypes[i+1] = d.DIType(params.At(i).Type())
		}
	} else {
		paramTypes = []llvm.Value{returnType}
	}

	// TODO(axw) get position of type definition for File field
	return d.builder.CreateSubroutineType(llvm.DISubroutineType{
		Parameters: paramTypes,
	})
}
Example #4
0
func initReflect(i *interpreter) {
	i.reflectPackage = &ssa.Package{
		Prog:    i.prog,
		Pkg:     reflectTypesPackage,
		Members: make(map[string]ssa.Member),
	}

	// Clobber the type-checker's notion of reflect.Value's
	// underlying type so that it more closely matches the fake one
	// (at least in the number of fields---we lie about the type of
	// the rtype field).
	//
	// We must ensure that calls to (ssa.Value).Type() return the
	// fake type so that correct "shape" is used when allocating
	// variables, making zero values, loading, and storing.
	//
	// TODO(adonovan): obviously this is a hack.  We need a cleaner
	// way to fake the reflect package (almost---DeepEqual is fine).
	// One approach would be not to even load its source code, but
	// provide fake source files.  This would guarantee that no bad
	// information leaks into other packages.
	if r := i.prog.ImportedPackage("reflect"); r != nil {
		rV := r.Pkg.Scope().Lookup("Value").Type().(*types.Named)

		// delete bodies of the old methods
		mset := i.prog.MethodSets.MethodSet(rV)
		for j := 0; j < mset.Len(); j++ {
			i.prog.MethodValue(mset.At(j)).Blocks = nil
		}

		tEface := types.NewInterface(nil, nil).Complete()
		rV.SetUnderlying(types.NewStruct([]*types.Var{
			types.NewField(token.NoPos, r.Pkg, "t", tEface, false), // a lie
			types.NewField(token.NoPos, r.Pkg, "v", tEface, false),
		}, nil))
	}

	i.rtypeMethods = methodSet{
		"Bits":      newMethod(i.reflectPackage, rtypeType, "Bits"),
		"Elem":      newMethod(i.reflectPackage, rtypeType, "Elem"),
		"Field":     newMethod(i.reflectPackage, rtypeType, "Field"),
		"In":        newMethod(i.reflectPackage, rtypeType, "In"),
		"Kind":      newMethod(i.reflectPackage, rtypeType, "Kind"),
		"NumField":  newMethod(i.reflectPackage, rtypeType, "NumField"),
		"NumIn":     newMethod(i.reflectPackage, rtypeType, "NumIn"),
		"NumMethod": newMethod(i.reflectPackage, rtypeType, "NumMethod"),
		"NumOut":    newMethod(i.reflectPackage, rtypeType, "NumOut"),
		"Out":       newMethod(i.reflectPackage, rtypeType, "Out"),
		"Size":      newMethod(i.reflectPackage, rtypeType, "Size"),
		"String":    newMethod(i.reflectPackage, rtypeType, "String"),
	}
	i.errorMethods = methodSet{
		"Error": newMethod(i.reflectPackage, errorType, "Error"),
	}
}
Example #5
0
func optimalSize(str *types.Struct, sizes *gcSizes) int64 {
	nf := str.NumFields()
	fields := make([]*types.Var, nf)
	alignofs := make([]int64, nf)
	sizeofs := make([]int64, nf)
	for i := 0; i < nf; i++ {
		fields[i] = str.Field(i)
		ft := fields[i].Type()
		alignofs[i] = sizes.Alignof(ft)
		sizeofs[i] = sizes.Sizeof(ft)
	}
	sort.Sort(&byAlignAndSize{fields, alignofs, sizeofs})
	return sizes.Sizeof(types.NewStruct(fields, nil))
}
Example #6
0
// makeClosure creates a closure from a function pointer and
// a set of bindings. The bindings are addresses of captured
// variables.
func (fr *frame) makeClosure(fn *govalue, bindings []*govalue) *govalue {
	govalues := append([]*govalue{fn}, bindings...)
	fields := make([]*types.Var, len(govalues))
	for i, v := range govalues {
		field := types.NewField(0, nil, "_", v.Type(), false)
		fields[i] = field
	}
	block := fr.createTypeMalloc(types.NewStruct(fields, nil))
	for i, v := range govalues {
		addressPtr := fr.builder.CreateStructGEP(block, i, "")
		fr.builder.CreateStore(v.value, addressPtr)
	}
	closure := fr.builder.CreateBitCast(block, fn.value.Type(), "")
	return newValue(closure, fn.Type())
}
Example #7
0
// StructType = "struct" "{" { Field } "}" .
func (p *parser) parseStructType(pkg *types.Package) types.Type {
	p.expectKeyword("struct")

	var fields []*types.Var
	var tags []string

	p.expect('{')
	for p.tok != '}' && p.tok != scanner.EOF {
		field, tag := p.parseField(pkg)
		p.expect(';')
		fields = append(fields, field)
		tags = append(tags, tag)
	}
	p.expect('}')

	return types.NewStruct(fields, tags)
}
Example #8
0
File: debug.go Project: hinike/llgo
func (d *DIBuilder) descriptorBasic(t *types.Basic, name string) llvm.Value {
	switch t.Kind() {
	case types.String:
		return d.typeDebugDescriptor(types.NewStruct([]*types.Var{
			types.NewVar(0, nil, "ptr", types.NewPointer(types.Typ[types.Uint8])),
			types.NewVar(0, nil, "len", types.Typ[types.Int]),
		}, nil), name)
	case types.UnsafePointer:
		return d.builder.CreateBasicType(llvm.DIBasicType{
			Name:        name,
			SizeInBits:  uint64(d.sizes.Sizeof(t) * 8),
			AlignInBits: uint64(d.sizes.Alignof(t) * 8),
			Encoding:    llvm.DW_ATE_unsigned,
		})
	default:
		bt := llvm.DIBasicType{
			Name:        t.String(),
			SizeInBits:  uint64(d.sizes.Sizeof(t) * 8),
			AlignInBits: uint64(d.sizes.Alignof(t) * 8),
		}
		switch bi := t.Info(); {
		case bi&types.IsBoolean != 0:
			bt.Encoding = llvm.DW_ATE_boolean
		case bi&types.IsUnsigned != 0:
			bt.Encoding = llvm.DW_ATE_unsigned
		case bi&types.IsInteger != 0:
			bt.Encoding = llvm.DW_ATE_signed
		case bi&types.IsFloat != 0:
			bt.Encoding = llvm.DW_ATE_float
		case bi&types.IsComplex != 0:
			bt.Encoding = llvm.DW_ATE_imaginary_float
		case bi&types.IsUnsigned != 0:
			bt.Encoding = llvm.DW_ATE_unsigned
		default:
			panic(fmt.Sprintf("unhandled: %#v", t))
		}
		return d.builder.CreateBasicType(bt)
	}
}
Example #9
0
// StructType = "struct" "{" [ FieldList ] "}" .
// FieldList  = Field { ";" Field } .
//
func (p *parser) parseStructType() types.Type {
	var fields []*types.Var
	var tags []string

	p.expectKeyword("struct")
	p.expect('{')
	for i := 0; p.tok != '}' && p.tok != scanner.EOF; i++ {
		if i > 0 {
			p.expect(';')
		}
		fld, tag := p.parseField()
		if tag != "" && tags == nil {
			tags = make([]string, i)
		}
		if tags != nil {
			tags = append(tags, tag)
		}
		fields = append(fields, fld)
	}
	p.expect('}')

	return types.NewStruct(fields, tags)
}
Example #10
0
func (p *importer) typ() types.Type {
	// if the type was seen before, i is its index (>= 0)
	i := p.int()
	if i >= 0 {
		return p.typList[i]
	}

	// otherwise, i is the type tag (< 0)
	switch i {
	case arrayTag:
		t := new(types.Array)
		p.record(t)

		n := p.int64()
		*t = *types.NewArray(p.typ(), n)
		return t

	case sliceTag:
		t := new(types.Slice)
		p.record(t)

		*t = *types.NewSlice(p.typ())
		return t

	case structTag:
		t := new(types.Struct)
		p.record(t)

		n := p.int()
		fields := make([]*types.Var, n)
		tags := make([]string, n)
		for i := range fields {
			fields[i] = p.field()
			tags[i] = p.string()
		}
		*t = *types.NewStruct(fields, tags)
		return t

	case pointerTag:
		t := new(types.Pointer)
		p.record(t)

		*t = *types.NewPointer(p.typ())
		return t

	case signatureTag:
		t := new(types.Signature)
		p.record(t)

		*t = *p.signature()
		return t

	case interfaceTag:
		// Create a dummy entry in the type list. This is safe because we
		// cannot expect the interface type to appear in a cycle, as any
		// such cycle must contain a named type which would have been
		// first defined earlier.
		n := len(p.typList)
		p.record(nil)

		// read embedded interfaces
		embeddeds := make([]*types.Named, p.int())
		for i := range embeddeds {
			embeddeds[i] = p.typ().(*types.Named)
		}

		// read methods
		methods := make([]*types.Func, p.int())
		for i := range methods {
			pkg, name := p.qualifiedName()
			methods[i] = types.NewFunc(token.NoPos, pkg, name, p.typ().(*types.Signature))
		}

		t := types.NewInterface(methods, embeddeds)
		p.typList[n] = t
		return t

	case mapTag:
		t := new(types.Map)
		p.record(t)

		*t = *types.NewMap(p.typ(), p.typ())
		return t

	case chanTag:
		t := new(types.Chan)
		p.record(t)

		*t = *types.NewChan(types.ChanDir(p.int()), p.typ())
		return t

	case namedTag:
		// read type object
		name := p.string()
		pkg := p.pkg()
		scope := pkg.Scope()
		obj := scope.Lookup(name)

		// if the object doesn't exist yet, create and insert it
		if obj == nil {
			obj = types.NewTypeName(token.NoPos, pkg, name, nil)
			scope.Insert(obj)
		}

		// associate new named type with obj if it doesn't exist yet
		t0 := types.NewNamed(obj.(*types.TypeName), nil, nil)

		// but record the existing type, if any
		t := obj.Type().(*types.Named)
		p.record(t)

		// read underlying type
		t0.SetUnderlying(p.typ())

		// read associated methods
		for i, n := 0, p.int(); i < n; i++ {
			t0.AddMethod(types.NewFunc(token.NoPos, pkg, p.string(), p.typ().(*types.Signature)))
		}

		return t

	default:
		panic(fmt.Sprintf("unexpected type tag %d", i))
	}
}
Example #11
0
// createThunk creates a thunk from a
// given function and arguments, suitable for use with
// "defer" and "go".
func (fr *frame) createThunk(call ssa.CallInstruction) (thunk llvm.Value, arg llvm.Value) {
	seenarg := make(map[ssa.Value]bool)
	var args []ssa.Value
	var argtypes []*types.Var

	packArg := func(arg ssa.Value) {
		switch arg.(type) {
		case *ssa.Builtin, *ssa.Function, *ssa.Const, *ssa.Global:
			// Do nothing: we can generate these in the thunk
		default:
			if !seenarg[arg] {
				seenarg[arg] = true
				args = append(args, arg)
				field := types.NewField(0, nil, "_", arg.Type(), true)
				argtypes = append(argtypes, field)
			}
		}
	}

	packArg(call.Common().Value)
	for _, arg := range call.Common().Args {
		packArg(arg)
	}

	var isRecoverCall bool
	i8ptr := llvm.PointerType(llvm.Int8Type(), 0)
	var structllptr llvm.Type
	if len(args) == 0 {
		if builtin, ok := call.Common().Value.(*ssa.Builtin); ok {
			isRecoverCall = builtin.Name() == "recover"
		}
		if isRecoverCall {
			// When creating a thunk for recover(), we must pass fr.canRecover.
			arg = fr.builder.CreateZExt(fr.canRecover, fr.target.IntPtrType(), "")
			arg = fr.builder.CreateIntToPtr(arg, i8ptr, "")
		} else {
			arg = llvm.ConstPointerNull(i8ptr)
		}
	} else {
		structtype := types.NewStruct(argtypes, nil)
		arg = fr.createTypeMalloc(structtype)
		structllptr = arg.Type()
		for i, ssaarg := range args {
			argptr := fr.builder.CreateStructGEP(arg, i, "")
			fr.builder.CreateStore(fr.llvmvalue(ssaarg), argptr)
		}
		arg = fr.builder.CreateBitCast(arg, i8ptr, "")
	}

	thunkfntype := llvm.FunctionType(llvm.VoidType(), []llvm.Type{i8ptr}, false)
	thunkfn := llvm.AddFunction(fr.module.Module, "", thunkfntype)
	thunkfn.SetLinkage(llvm.InternalLinkage)
	fr.addCommonFunctionAttrs(thunkfn)

	thunkfr := newFrame(fr.unit, thunkfn)
	defer thunkfr.dispose()

	prologuebb := llvm.AddBasicBlock(thunkfn, "prologue")
	thunkfr.builder.SetInsertPointAtEnd(prologuebb)

	if isRecoverCall {
		thunkarg := thunkfn.Param(0)
		thunkarg = thunkfr.builder.CreatePtrToInt(thunkarg, fr.target.IntPtrType(), "")
		thunkfr.canRecover = thunkfr.builder.CreateTrunc(thunkarg, llvm.Int1Type(), "")
	} else if len(args) > 0 {
		thunkarg := thunkfn.Param(0)
		thunkarg = thunkfr.builder.CreateBitCast(thunkarg, structllptr, "")
		for i, ssaarg := range args {
			thunkargptr := thunkfr.builder.CreateStructGEP(thunkarg, i, "")
			thunkarg := thunkfr.builder.CreateLoad(thunkargptr, "")
			thunkfr.env[ssaarg] = newValue(thunkarg, ssaarg.Type())
		}
	}

	_, isDefer := call.(*ssa.Defer)

	entrybb := llvm.AddBasicBlock(thunkfn, "entry")
	br := thunkfr.builder.CreateBr(entrybb)
	thunkfr.allocaBuilder.SetInsertPointBefore(br)

	thunkfr.builder.SetInsertPointAtEnd(entrybb)
	var exitbb llvm.BasicBlock
	if isDefer {
		exitbb = llvm.AddBasicBlock(thunkfn, "exit")
		thunkfr.runtime.setDeferRetaddr.call(thunkfr, llvm.BlockAddress(thunkfn, exitbb))
	}
	if isDefer && isRecoverCall {
		thunkfr.callRecover(true)
	} else {
		thunkfr.callInstruction(call)
	}
	if isDefer {
		thunkfr.builder.CreateBr(exitbb)
		thunkfr.builder.SetInsertPointAtEnd(exitbb)
	}
	thunkfr.builder.CreateRetVoid()

	thunk = fr.builder.CreateBitCast(thunkfn, i8ptr, "")
	return
}