func (fft *FastFtrlTrainer) TrainImpl( model_file string, train_file string, line_cnt int, test_file string) error { if !fft.Init { fft.log4fft.Error("[FastFtrlTrainer-TrainImpl] Fast ftrl trainer restore error.") return errors.New("[FastFtrlTrainer-TrainImpl] Fast ftrl trainer restore error.") } fft.log4fft.Info(fmt.Sprintf( "[%s] params={alpha:%.2f, beta:%.2f, l1:%.2f, l2:%.2f, dropout:%.2f, epoch:%d}\n", fft.JobName, fft.ParamServer.Alpha, fft.ParamServer.Beta, fft.ParamServer.L1, fft.ParamServer.L2, fft.ParamServer.Dropout, fft.Epoch)) var solvers []solver.FtrlWorker = make([]solver.FtrlWorker, fft.NumThreads) for i := 0; i < fft.NumThreads; i++ { solvers[i].Initialize(&fft.ParamServer, fft.PusStep, fft.FetchStep) } predict_func := func(x util.Pvector) float64 { return fft.ParamServer.Predict(x) } var timer util.StopWatch timer.StartTimer() for iter := 0; iter < fft.Epoch; iter++ { var file_parser ParallelFileParser file_parser.OpenFile(train_file, fft.NumThreads) count := 0 var loss float64 = 0. var lock sync.Mutex worker_func := func(i int, c *sync.WaitGroup) { local_count := 0 var local_loss float64 = 0 for { flag, y, x := file_parser.ReadSampleMultiThread(i) if flag != nil { break } pred := solvers[i].Update(x, y, &fft.ParamServer) local_loss += calc_loss(y, pred) local_count++ if i == 0 && local_count%10000 == 0 { tmp_cnt := math.Min(float64(local_count*fft.NumThreads), float64(line_cnt)) fft.log4fft.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", fft.JobName, iter, float64(tmp_cnt*100)/float64(line_cnt), timer.StopTimer(), float64(local_loss)/float64(local_count))) } } lock.Lock() count += local_count loss += local_loss lock.Unlock() solvers[i].PushParam(&fft.ParamServer) defer c.Done() } if iter == 0 && util.UtilGreater(fft.BurnIn, float64(0)) { burn_in_cnt := int(fft.BurnIn * float64(line_cnt)) var local_loss float64 = 0 for i := 0; i < burn_in_cnt; i++ { //线程0做预热 flag, y, x := file_parser.ReadSample(0) if flag != nil { break } pred := fft.ParamServer.Update(x, y) local_loss += calc_loss(y, pred) if i%10000 == 0 { fft.log4fft.Info(fmt.Sprintf("[%s] burn-in processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", fft.JobName, float64((i+1)*100)/float64(line_cnt), timer.StopTimer(), float64(local_loss)/float64(i+1))) } } fft.log4fft.Info(fmt.Sprintf("[%s] burn-in processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", fft.JobName, float64(burn_in_cnt*100)/float64(line_cnt), timer.StopTimer(), float64(local_loss)/float64(burn_in_cnt))) if util.UtilFloat64Equal(fft.BurnIn, float64(1)) { continue } } for i := 0; i < fft.NumThreads; i++ { solvers[i].Reset(&fft.ParamServer) } util.UtilParallelRun(worker_func, fft.NumThreads) file_parser.CloseFile(fft.NumThreads) // f(w, // "[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", // fft.JobName, // iter, // float64(count*100)/float64(line_cnt), // timer.StopTimer(), // float64(loss)/float64(count)) if test_file != "" { eval_loss := evaluate_file(test_file, predict_func, fft.NumThreads) fft.log4fft.Info(fmt.Sprintf("[%s] validation-loss=[%f]\n", fft.JobName, float64(eval_loss))) } } return fft.ParamServer.SaveModel(model_file) }
func (lft *LockFreeFtrlTrainer) TrainBatch( encodemodel string, instances []string) error { line_cnt := len(instances) if line_cnt == 0 { lft.log.Error("[LockFreeFtrlTrainer-TrainBatch] No model retrained.") return errors.New("[LockFreeFtrlTrainer-TrainBatch] No model retrained.") } var fls solver.FtrlSolver err := json.Unmarshal([]byte(encodemodel), &fls) if err != nil { lft.log.Error("[LockFreeFtrlTrainer-TrainBatch]" + err.Error()) return errors.New("[LockFreeFtrlTrainer-TrainBatch]" + err.Error()) } lft.Solver = fls lft.log.Info(fmt.Sprintf("[%s] params={alpha:%.2f, beta:%.2f, l1:%.2f, l2:%.2f, dropout:%.2f, epoch:%d}\n", lft.JobName, lft.Solver.Alpha, lft.Solver.Beta, lft.Solver.L1, lft.Solver.L2, lft.Solver.Dropout, lft.Epoch)) predict_func := func(x util.Pvector) float64 { return lft.Solver.Predict(x) } var timer util.StopWatch timer.StartTimer() for iter := 0; iter < lft.Epoch; iter++ { var stream_parser StreamParser stream_parser.Open(instances) count := 0 var loss float64 = 0 var lock sync.Mutex worker_func := func(i int, c *sync.WaitGroup) { local_count := 0 var local_loss float64 = 0 for { flag, y, x := stream_parser.ReadSampleMultiThread() if flag != nil { break } pred := lft.Solver.Update(x, y) local_loss += calc_loss(y, pred) local_count++ if i == 0 && local_count%10000 == 0 { tmp_cnt := math.Min(float64(local_count*lft.NumThreads), float64(line_cnt)) lft.log.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", lft.JobName, iter, float64(tmp_cnt*100)/float64(line_cnt), timer.StopTimer(), float64(local_loss)/float64(local_count))) } } lock.Lock() count += local_count loss += local_loss lock.Unlock() defer c.Done() } util.UtilParallelRun(worker_func, lft.NumThreads) stream_parser.Close() lft.log.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", lft.JobName, iter, float64(count*100)/float64(line_cnt), timer.StopTimer(), float64(loss)/float64(count))) eval_loss := evaluate_stream(instances, predict_func, 0) lft.log.Info(fmt.Sprintf("[%s] validation-loss=[%f]\n", lft.JobName, float64(eval_loss))) } return nil }
func (lft *LockFreeFtrlTrainer) TrainImpl( model_file string, train_file string, line_cnt int, test_file string) error { if !lft.Init { lft.log.Error("[LockFreeFtrlTrainer-TrainImpl] Fast ftrl trainer restore error.") return errors.New("[LockFreeFtrlTrainer-TrainImpl] Fast ftrl trainer restore error.") } lft.log.Info(fmt.Sprintf("[%s] params={alpha:%.2f, beta:%.2f, l1:%.2f, l2:%.2f, dropout:%.2f, epoch:%d}\n", lft.JobName, lft.Solver.Alpha, lft.Solver.Beta, lft.Solver.L1, lft.Solver.L2, lft.Solver.Dropout, lft.Epoch)) predict_func := func(x util.Pvector) float64 { return lft.Solver.Predict(x) } var timer util.StopWatch timer.StartTimer() for iter := 0; iter < lft.Epoch; iter++ { var file_parser FileParser file_parser.OpenFile(train_file) count := 0 var loss float64 = 0 var lock sync.Mutex worker_func := func(i int, c *sync.WaitGroup) { local_count := 0 var local_loss float64 = 0 for { flag, y, x := file_parser.ReadSampleMultiThread() if flag != nil { break } pred := lft.Solver.Update(x, y) local_loss += calc_loss(y, pred) local_count++ if i == 0 && local_count%10000 == 0 { tmp_cnt := math.Min(float64(local_count*lft.NumThreads), float64(line_cnt)) lft.log.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", lft.JobName, iter, float64(tmp_cnt*100)/float64(line_cnt), timer.StopTimer(), float64(local_loss)/float64(local_count))) } } lock.Lock() count += local_count loss += local_loss lock.Unlock() defer c.Done() } util.UtilParallelRun(worker_func, lft.NumThreads) file_parser.CloseFile() lft.log.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", lft.JobName, iter, float64(count*100)/float64(line_cnt), timer.StopTimer(), float64(loss)/float64(count))) if test_file != "" { eval_loss := evaluate_file(test_file, predict_func, 0) lft.log.Info(fmt.Sprintf("[%s] validation-loss=[%f]\n", lft.JobName, float64(eval_loss))) } } return lft.Solver.SaveModel(model_file) }
func (ft *FtrlTrainer) TrainImpl( model_file string, train_file string, line_cnt int, test_file string) error { if !ft.Init { ft.log.Error("[FtrlTrainer-TrainImpl] Fast ftrl trainer restore error.") return errors.New("[FtrlTrainer-TrainImpl] Fast ftrl trainer restore error.") } ft.log.Info(fmt.Sprintf("[%s] params={alpha:%.2f, beta:%.2f, l1:%.2f, l2:%.2f, dropout:%.2f, epoch:%d}\n", ft.JobName, ft.Solver.Alpha, ft.Solver.Beta, ft.Solver.L1, ft.Solver.L2, ft.Solver.Dropout, ft.Epoch)) predict_func := func(x util.Pvector) float64 { return ft.Solver.Predict(x) } var timer util.StopWatch timer.StartTimer() var last_time float64 = 0 for iter := 0; iter < ft.Epoch; iter++ { var file_parser FileParser file_parser.OpenFile(train_file) cur_cnt := 0 last_cnt := 0 var loss float64 = 0 for { flag, y, x := file_parser.ReadSample() if flag != nil { break } pred := ft.Solver.Update(x, y) loss += calc_loss(y, pred) cur_cnt++ if cur_cnt-last_cnt > 100000 && timer.StopTimer()-last_time > 0.5 { ft.log.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", ft.JobName, iter, float64(cur_cnt*100)/float64(line_cnt), timer.StopTimer(), float64(loss)/float64(cur_cnt))) last_cnt = cur_cnt last_time = timer.StopTimer() } } ft.log.Info(fmt.Sprintf("[%s] epoch=%d processed=[%.2f%%] time=[%.2f] train-loss=[%.6f]\n", ft.JobName, iter, float64(cur_cnt*100)/float64(line_cnt), timer.StopTimer(), float64(loss)/float64(cur_cnt))) file_parser.CloseFile() if test_file != "" { eval_loss := evaluate_file(test_file, predict_func, 0) ft.log.Info(fmt.Sprintf("[%s] validation-loss=[%f]\n", float64(eval_loss))) } } return ft.Solver.SaveModel(model_file) }