Example #1
1
// Draw renders the given cpu cores on img.
func (app *App) Draw(img draw.Image, cpus []CPU) {
	rect := img.Bounds()
	bg := app.Background
	if bg == nil {
		bg = image.Black
	}
	draw.Draw(img, rect, bg, bg.Bounds().Min, draw.Over)

	if len(cpus) == 0 {
		return
	}

	cpuDx := rect.Dx() / len(cpus)
	ptIncr := image.Point{X: cpuDx}
	ptDelta := image.Point{}
	rectDx := image.Rectangle{
		Min: rect.Min,
		Max: rect.Max,
	}
	rectDx.Max.X = rect.Min.X + cpuDx
	for _, cpu := range cpus {
		irect := image.Rectangle{
			Min: rectDx.Min.Add(ptDelta),
			Max: rectDx.Max.Add(ptDelta),
		}
		subimg := SubImage(img, irect)
		app.renderCPU(subimg, cpu)

		ptDelta = ptDelta.Add(ptIncr)
	}
}
func gennoise(screen draw.Image) {
	for y := 0; y < 240; y++ {
		for x := 0; x < 320; x++ {
			screen.Set(x, y, <-randcol)
		}
	}
}
Example #3
0
func (p *Drawer) PasteAt(img draw.Image, pt P) {
	flr := pt.Floor()
	bounds := img.Bounds()
	dp := image.Point{flr[0], flr[1]}
	rec := bounds.Sub(bounds.Min).Add(dp)
	draw.Draw(p.Img, rec, img, bounds.Min, draw.Over)
}
Example #4
0
// Thumbnail scales and crops src so it fits in dst.
func Thumbnail(dst draw.Image, src image.Image) error {
	// Scale down src in the dimension that is closer to dst.
	sb := src.Bounds()
	db := dst.Bounds()
	rx := float64(sb.Dx()) / float64(db.Dx())
	ry := float64(sb.Dy()) / float64(db.Dy())
	var b image.Rectangle
	if rx < ry {
		b = image.Rect(0, 0, db.Dx(), int(float64(sb.Dy())/rx))
	} else {
		b = image.Rect(0, 0, int(float64(sb.Dx())/ry), db.Dy())
	}

	buf := image.NewRGBA(b)
	if err := Scale(buf, src); err != nil {
		return err
	}

	// Crop.
	// TODO(crawshaw): improve on center-alignment.
	var pt image.Point
	if rx < ry {
		pt.Y = (b.Dy() - db.Dy()) / 2
	} else {
		pt.X = (b.Dx() - db.Dx()) / 2
	}
	draw.Draw(dst, db, buf, pt, draw.Src)
	return nil
}
Example #5
0
func line(img draw.Image, a, b image.Point, c color.Color) {
	minx, maxx := minmax(a.X, b.X)
	miny, maxy := minmax(a.Y, b.Y)

	Δx := float64(b.X - a.X)
	Δy := float64(b.Y - a.Y)

	if maxx-minx > maxy-miny {
		d := 1
		if a.X > b.X {
			d = -1
		}
		for x := 0; x != b.X-a.X+d; x += d {
			y := int(float64(x) * Δy / Δx)
			img.Set(a.X+x, a.Y+y, c)
		}
	} else {
		d := 1
		if a.Y > b.Y {
			d = -1
		}
		for y := 0; y != b.Y-a.Y+d; y += d {
			x := int(float64(y) * Δx / Δy)
			img.Set(a.X+x, a.Y+y, c)
		}
	}
}
Example #6
0
// http://en.wikipedia.org/wiki/Bresenham's_line_algorithm#Simplification
func line(x0, y0, x1, y1 int, c color.Color, img draw.Image) {
	var dx = abs(x1 - x0)
	var dy = abs(y1 - y0)
	var err = dx - dy
	var sx, sy = 1, 1

	if x0 > x1 {
		sx = -1
	}
	if y0 > y1 {
		sy = -1
	}

	img.Set(x0, y0, c)
	for x0 != x1 || y0 != y1 {
		var e2 = 2 * err
		if e2 > -dy {
			err -= dy
			x0 += sx
		}
		if e2 < dx {
			err += dx
			y0 += sy
		}
		img.Set(x0, y0, c)
	}

}
Example #7
0
func Bresenham(img draw.Image, color color.Color, x0, y0, x1, y1 int) {
	dx := abs(x1 - x0)
	dy := abs(y1 - y0)
	var sx, sy int
	if x0 < x1 {
		sx = 1
	} else {
		sx = -1
	}
	if y0 < y1 {
		sy = 1
	} else {
		sy = -1
	}
	err := dx - dy

	var e2 int
	for {
		img.Set(x0, y0, color)
		if x0 == x1 && y0 == y1 {
			return
		}
		e2 = 2 * err
		if e2 > -dy {
			err = err - dy
			x0 = x0 + sx
		}
		if e2 < dx {
			err = err + dx
			y0 = y0 + sy
		}
	}
}
Example #8
0
// NewImage returns a new image canvas
// that draws to the given image.  The
// minimum point of the given image
// should probably be 0,0.
func NewImage(img draw.Image, name string) (*Canvas, error) {
	w := float64(img.Bounds().Max.X - img.Bounds().Min.X)
	h := float64(img.Bounds().Max.Y - img.Bounds().Min.Y)

	X, err := xgbutil.NewConn()
	if err != nil {
		return nil, err
	}
	keybind.Initialize(X)
	ximg := xgraphics.New(X, image.Rect(0, 0, int(w), int(h)))
	err = ximg.CreatePixmap()
	if err != nil {
		return nil, err
	}
	painter := NewPainter(ximg)
	gc := draw2d.NewGraphicContextWithPainter(ximg, painter)
	gc.SetDPI(dpi)
	gc.Scale(1, -1)
	gc.Translate(0, -h)

	wid := ximg.XShowExtra(name, true)
	go func() {
		xevent.Main(X)
	}()

	c := &Canvas{
		Canvas: vgimg.NewWith(vgimg.UseImageWithContext(img, gc)),
		x:      X,
		ximg:   ximg,
		wid:    wid,
	}
	vg.Initialize(c)
	return c, nil
}
Example #9
0
// decodeP6 reads a binary pixmap
func decodeP6(r *bufio.Reader, img draw.Image, width, height uint) {
	var x, y, pix int

	mask := byte(readU(r))
	mul := 255 / mask
	data := make([]byte, width*height*3)

	space(r)

	_, err := r.Read(data)
	check(err)

	for y = 0; y < int(height); y++ {
		for x = 0; x < int(width); x++ {
			img.Set(x, y, color.RGBA{
				(data[pix] & mask) * mul,
				(data[pix+1] & mask) * mul,
				(data[pix+2] & mask) * mul,
				0xff,
			})

			pix += 3
		}
	}
}
Example #10
0
func (ff *FontFace) GetImage(text string) (img draw.Image, err error) {
	var (
		src image.Image
		bg  image.Image
		dst draw.Image
		pt  fixed.Point26_6
		w   int
		h   int
	)
	src = image.NewUniform(ff.fg)
	bg = image.NewUniform(ff.bg)
	w = int(float32(len(text)) * ff.charw)
	h = int(ff.charh)
	dst = image.NewRGBA(image.Rect(0, 0, w, h))
	draw.Draw(dst, dst.Bounds(), bg, image.ZP, draw.Src)
	ff.context.SetSrc(src)
	ff.context.SetDst(dst)
	ff.context.SetClip(dst.Bounds())
	pt = freetype.Pt(0, int(ff.charh+ff.offy))
	if pt, err = ff.context.DrawString(text, pt); err != nil {
		return
	}
	img = image.NewRGBA(image.Rect(0, 0, int(pt.X/64), int(pt.Y/64)))
	draw.Draw(img, img.Bounds(), dst, image.Pt(0, -int(ff.offy)), draw.Src)
	return
}
Example #11
0
// decodeP4 reads a binary bitmap
func decodeP4(r *bufio.Reader, img draw.Image, width, height uint) {
	var x, y, bit int

	bytes := int(math.Ceil((float64(width) / 8)))
	bits := newBitset(uint(bytes) * height * 8)
	pad := (bytes * 8) - int(width)

	space(r)

	_, err := r.Read(bits)
	check(err)

	for y = 0; y < int(height); y++ {
		for x = 0; x < int(width); x++ {
			if bits.Test(bit) {
				img.Set(x, y, color.Alpha{0xff})
			} else {
				img.Set(x, y, color.Alpha{0x00})
			}

			bit++
		}

		bit += pad
	}
}
Example #12
0
// Convolve produces dst by applying the convolution kernel k to src.
func Convolve(dst draw.Image, src image.Image, k Kernel) (err error) {
	if dst == nil || src == nil || k == nil {
		return nil
	}

	b := dst.Bounds()
	dstRgba, ok := dst.(*image.RGBA)
	if !ok {
		dstRgba = image.NewRGBA(b)
	}

	switch k := k.(type) {
	case *SeparableKernel:
		err = convolveRGBASep(dstRgba, src, k)
	default:
		err = convolveRGBA(dstRgba, src, k)
	}

	if err != nil {
		return err
	}

	if !ok {
		draw.Draw(dst, b, dstRgba, b.Min, draw.Src)
	}
	return nil
}
Example #13
0
// NewFromImage uses the given image as the destination for all calls to Add.
// It is assumed to be empty at the beginning so all the available space will be
// used for sub-images.
func NewFromImage(atlas draw.Image) *Atlas {
	packer := binpacker.New(atlas.Bounds().Dx(), atlas.Bounds().Dy())
	return &Atlas{
		Image:  atlas,
		packer: packer,
	}
}
Example #14
0
// 翻转函数,要求两个图像大小契合,act&1 == 0则左右翻转,否则垂直翻转。
func Overturn(dst draw.Image, src image.Image, act int) error {
	var to func(int, int) (int, int)
	sr := src.Bounds()
	dr := dst.Bounds()
	W := dr.Max.X - dr.Min.X
	H := dr.Max.Y - dr.Min.Y
	if H <= 0 || W <= 0 {
		return errors.New("target image is empty or noncanonical")
	}
	if sr.Min.X >= sr.Max.X || sr.Min.Y >= sr.Max.Y {
		return errors.New("source image is empty or noncanonical")
	}
	if sr.Max.X-sr.Min.X != W || sr.Max.Y-sr.Min.Y != H {
		return errors.New("target and source must be same size!")
	}
	if act&1 == 0 {
		to = func(x, y int) (int, int) {
			return W - 1 - x, y
		}
	} else {
		to = func(x, y int) (int, int) {
			return x, H - 1 - y
		}
	}
	for i := 0; i < W; i++ {
		for j := 0; j < H; j++ {
			x, y := to(i, j)
			dst.Set(dr.Min.X+x, dr.Min.Y+y, src.At(sr.Min.X+i, sr.Min.Y+j))
		}
	}
	return nil
}
Example #15
0
// Transform applies the affine transform to src and produces dst.
func (a Affine) Transform(dst draw.Image, src image.Image, i interp.Interp) error {
	if dst == nil {
		return errors.New("graphics: dst is nil")
	}
	if src == nil {
		return errors.New("graphics: src is nil")
	}

	// RGBA fast path.
	dstRGBA, dstOk := dst.(*image.RGBA)
	srcRGBA, srcOk := src.(*image.RGBA)
	interpRGBA, interpOk := i.(interp.RGBA)
	if dstOk && srcOk && interpOk {
		return a.transformRGBA(dstRGBA, srcRGBA, interpRGBA)
	}

	srcb := src.Bounds()
	b := dst.Bounds()
	for y := b.Min.Y; y < b.Max.Y; y++ {
		for x := b.Min.X; x < b.Max.X; x++ {
			sx, sy := a.pt(x, y)
			if inBounds(srcb, sx, sy) {
				dst.Set(x, y, i.Interp(src, sx, sy))
			}
		}
	}
	return nil
}
Example #16
0
// RenderCPU implements the Renderer interface.
func (b *Border) RenderCPU(img draw.Image, cpu CPU) {
	rect := img.Bounds()
	interior := geometry.Contract(rect, b.Size)
	mask := MaskInside(interior)
	draw.DrawMask(img, rect, image.NewUniform(b.Color), image.ZP, mask, rect.Min, draw.Over)
	sub := SubImage(img, interior)
	b.Renderer.RenderCPU(sub, cpu)
}
Example #17
0
func newImageDimentions(img draw.Image, angle float64) (int, int) {
	bounds := img.Bounds()
	width := float64(bounds.Max.X - bounds.Min.X)
	height := float64(bounds.Max.Y - bounds.Min.Y)

	w, h := newDimentions(width, height, angle)
	return int(w), int(h)
}
Example #18
0
func testDrawRandom(p draw.Image) {
	bd := p.Bounds()
	for y, yEnd := bd.Min.Y, bd.Max.Y; y < yEnd; y++ {
		for x, xEnd := bd.Min.X, bd.Max.X; x < xEnd; x++ {
			p.Set(x, y, testRandomColor())
		}
	}
}
Example #19
0
// decodeP1 reads an ASCII bitmap
func decodeP1(r *bufio.Reader, img draw.Image, width, height uint) {
	var x, y int

	for y = 0; y < int(height); y++ {
		for x = 0; x < int(width); x++ {
			img.Set(x, y, color.Alpha{uint8(readU(r)) * 0xff})
		}
	}
}
Example #20
0
func imageConvert(src image.Image, dest draw.Image) draw.Image {
	w, h := src.Bounds().Dx(), src.Bounds().Dy()
	for y := 0; y < h; y += 1 {
		for x := 0; x < w; x += 1 {
			dest.Set(x, y, dest.ColorModel().Convert(src.At(x, y)))
		}
	}
	return dest
}
Example #21
0
// MapColorInRectangle is a helper function for working on part of an image. It
// takes the original image, a function to use, a image to write to, and the
// bounds of the original (and therefore the final image) to act upon.
func MapColorInRectangle(img image.Image, bounds image.Rectangle, dest draw.Image,
	f Composable) {

	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
		for x := bounds.Min.X; x < bounds.Max.X; x++ {
			dest.Set(x, y, f(img.At(x, y)))
		}
	}
}
Example #22
0
// TransformCenter applies the affine transform to src and produces dst.
// Equivalent to
//   a.CenterFit(dst, src).Transform(dst, src, i).
func (a Affine) TransformCenter(dst draw.Image, src image.Image, i interp.Interp) error {
	if dst == nil {
		return errors.New("graphics: dst is nil")
	}
	if src == nil {
		return errors.New("graphics: src is nil")
	}

	return a.CenterFit(dst.Bounds(), src.Bounds()).Transform(dst, src, i)
}
Example #23
0
// Like PixelSizeChanger, but instead of the pixel size the new image
// is given.
func DimensionChanger(img draw.Image, w, h int) draw.Image {
	b := img.Bounds().Canon()
	return &dimensionChanger{
		Image:    img,
		paddingX: b.Dx() % w,
		paddingY: b.Dy() % h,
		pixel:    image.Rect(0, 0, b.Dx()/w, b.Dy()/h),
		bounds:   image.Rect(0, 0, w, h),
	}
}
Example #24
0
// NewBackground creates a new Background object that
// draws to img, and draws the actual background with bg.
// The flush function, if non-nil, will be called to
// whenever changes are to be made visible externally
// (for example when Flush() is called.
//
// Note that bg is drawn with the draw.Src operation,
// so it is possible to create images with a transparent
// background.
//
func NewBackground(img draw.Image, bg image.Image, flush func(r image.Rectangle)) *Background {
	r := img.Bounds()
	return &Background{
		img:       img,
		bg:        bg,
		r:         r,
		flushrect: r,
		imgflush:  flush,
	}
}
Example #25
0
func newSetFuncDefault(p draw.Image) SetFunc {
	return func(x, y int, r, g, b, a uint32) {
		p.Set(x, y, color.RGBA64{
			R: uint16(r),
			G: uint16(g),
			B: uint16(b),
			A: uint16(a),
		})
	}
}
Example #26
0
// SliceImage returns an image which is a view onto a portion of img.
// The returned image has the specified width and height,
// but all draw operations are clipped to r.
// The origin of img is aligned with p. Where img
// overlaps with r, it will be used for drawing operations.
//
func SliceImage(width, height int, r image.Rectangle, img draw.Image, p image.Point) draw.Image {
	// TODO: detect when img is itself a SliceImage and
	// use the underlying image directly.
	i := new(imageSlice)
	i.img = img
	i.r = r.Intersect(image.Rectangle{p, p.Add(img.Bounds().Size())})
	//debugp("actual sliced rectangle %v\n", i.r)
	i.p = p
	return i
}
Example #27
0
// DrawLinear draws a linear gradient to dst. If the gradient vector (as
// defined by x0, y0, x1, and y1) is found to be purely horizontal or purely
// vertical, the appropriate optimized functions will be called.
func DrawLinear(dst draw.Image, x0, y0, x1, y1 float64, stops []Stop) {
	if y0 == y1 && x0 != x1 {
		drawHLinear(dst, x0, x1, stops)
		return
	}

	if x0 == x1 && y0 != y1 {
		drawVLinear(dst, y0, y1, stops)
		return
	}

	if len(stops) == 0 {
		return
	}

	if y0 > y1 {
		panic(fmt.Sprintf("invalid bounds y0(%f)>y1(%f)", y0, y1))
	}
	if x0 > x1 {
		panic(fmt.Sprintf("invalid bounds x0(%f)>x1(%f)", x0, x1))
	}

	bb := dst.Bounds()
	width, height := bb.Dx(), bb.Dy()

	x0, y0 = x0*float64(width), y0*float64(height)
	x1, y1 = x1*float64(width), y1*float64(height)

	dx, dy := x1-x0, y1-y0
	px0, py0 := x0-dy, y0+dx
	mag := math.Hypot(dx, dy)

	var col color.Color
	for y := 0; y < width; y++ {
		fy := float64(y)

		for x := 0; x < width; x++ {
			fx := float64(x)
			// is the pixel before the start of the gradient?
			s0 := (px0-x0)*(fy-y0) - (py0-y0)*(fx-x0)
			if s0 > 0 {
				col = stops[0].Col
			} else {
				// calculate the distance of the pixel from the first stop line
				u := ((fx-x0)*(px0-x0) + (fy-y0)*(py0-y0)) /
					(mag * mag)
				x2, y2 := x0+u*(px0-x0), y0+u*(py0-y0)
				d := math.Hypot(fx-x2, fy-y2) / mag

				col = getColour(d, stops)
			}
			dst.Set(x+bb.Min.X, y+bb.Min.Y, col)
		}
	}
}
Example #28
0
func (l limits) translate(p DataPoint, i draw.Image, dotsize int) (rv image.Point) {
	// Normalize to 0-1
	x := float64(p.X()-l.Min.X()) / float64(l.Dx())
	y := float64(p.Y()-l.Min.Y()) / float64(l.Dy())

	// And remap to the image
	rv.X = int(x * float64((i.Bounds().Max.X - dotsize)))
	rv.Y = int((1.0 - y) * float64((i.Bounds().Max.Y - dotsize)))

	return
}
Example #29
0
func (burkes) Draw(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
	quantError0 := make([][3]int32, r.Dx()+4)
	quantError1 := make([][3]int32, r.Dx()+4)

	out := color.RGBA64{A: 0xffff}
	for y := 0; y != r.Dy(); y++ {
		for x := 0; x != r.Dx(); x++ {
			sr, sg, sb, _ := src.At(sp.X+x, sp.Y+y).RGBA()
			er, eg, eb := int32(sr), int32(sg), int32(sb)

			er = clamp(er + quantError0[x+2][0]/32)
			eg = clamp(eg + quantError0[x+2][1]/32)
			eb = clamp(eb + quantError0[x+2][2]/32)

			out.R = uint16(er)
			out.G = uint16(eg)
			out.B = uint16(eb)
			dst.Set(r.Min.X+x, r.Min.Y+y, &out)

			sr, sg, sb, _ = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
			er -= int32(sr)
			eg -= int32(sg)
			eb -= int32(sb)

			quantError0[x+3][0] += er * 8
			quantError0[x+3][1] += eg * 8
			quantError0[x+3][2] += eb * 8
			quantError0[x+4][0] += er * 4
			quantError0[x+4][1] += eg * 4
			quantError0[x+4][2] += eb * 4
			quantError1[x+0][0] += er * 2
			quantError1[x+0][1] += eg * 2
			quantError1[x+0][2] += eb * 2
			quantError1[x+1][0] += er * 4
			quantError1[x+1][1] += eg * 4
			quantError1[x+1][2] += eb * 4
			quantError1[x+2][0] += er * 8
			quantError1[x+2][1] += eg * 8
			quantError1[x+2][2] += eb * 8
			quantError1[x+3][0] += er * 4
			quantError1[x+3][1] += eg * 4
			quantError1[x+3][2] += eb * 4
			quantError1[x+4][0] += er * 2
			quantError1[x+4][1] += eg * 2
			quantError1[x+4][2] += eb * 2
		}

		// Recycle the quantization error buffers.
		quantError0, quantError1 = quantError1, quantError0
		for i := range quantError1 {
			quantError1[i] = [3]int32{}
		}
	}
}
Example #30
0
// RenderCPU implements the Renderer interface.
func (frac *FractionRenderer) RenderCPU(img draw.Image, cpu CPU) {
	rect := img.Bounds()

	utilized := cpu.FracUtil()
	utilizedHeight := int(float64(rect.Dy()) * utilized)
	yoffset := rect.Dy() - utilizedHeight
	rect.Min = rect.Min.Add(image.Pt(0, yoffset))
	img = SubImage(img, rect)

	frac.Renderer.RenderCPU(img, cpu)
}