func (self *influxdbSink) metricToSeries(timeseries *sink_api.Timeseries) *influxdb.Series { columns := []string{} values := []interface{}{} // TODO: move labels to tags once v0.9.0 is released. seriesName := timeseries.Point.Name if timeseries.MetricDescriptor.Units.String() != "" { seriesName = fmt.Sprintf("%s_%s", seriesName, timeseries.MetricDescriptor.Units.String()) } if timeseries.MetricDescriptor.Type.String() != "" { seriesName = fmt.Sprintf("%s_%s", seriesName, timeseries.MetricDescriptor.Type.String()) } // Add the real metric value. columns = append(columns, "value") values = append(values, timeseries.Point.Value) // Append labels. if !self.c.avoidColumns { for key, value := range timeseries.Point.Labels { columns = append(columns, key) values = append(values, value) } } else { seriesName = strings.Replace(seriesName, "/", "_", -1) seriesName = fmt.Sprintf("%s_%s", util.LabelsToString(timeseries.Point.Labels, "_"), seriesName) } // Add timestamp. columns = append(columns, "time") values = append(values, timeseries.Point.End.Unix()) // Ass sequence number columns = append(columns, "sequence_number") values = append(values, self.seqNum.Get(seriesName)) return self.newSeries(seriesName, columns, values) }
func (sink *influxdbSink) storeEventNoColumns(event kube_api.Event) (*influxdb.Series, error) { // Append labels to seriesName instead of adding extra columns seriesName := strings.Replace(eventsSeriesName, "/", "_", -1) labels := make(map[string]string) if event.InvolvedObject.Kind == "Pod" { labels[sink_api.LabelPodId.Key] = string(event.InvolvedObject.UID) labels[sink_api.LabelPodName.Key] = event.InvolvedObject.Name } labels[sink_api.LabelHostname.Key] = event.Source.Host seriesName = fmt.Sprintf("%s_%s", util.LabelsToString(labels, "_"), seriesName) columns := []string{} columns = append(columns, "time") // Column 0 columns = append(columns, "value") // Column 1 columns = append(columns, "sequence_number") // Column 2 value, err := getEventValue(&event) if err != nil { return nil, err } // There's only one point per series for no columns points := make([][]interface{}, 1) points[0] = make([]interface{}, len(columns)) points[0][0] = event.LastTimestamp.Time.Round(time.Millisecond).Unix() // Column 0 - time points[0][1] = sink.seqNum.Get(eventsSeriesName) // Column 1 - sequence_number points[0][2] = value // Column 2 - value return &influxdb.Series{ Name: seriesName, Columns: eventColumns, Points: points, }, nil }
func (self *GcmCore) GetEquivalentRateMetric(metric *sink_api.Point) (*Timeseries, error) { // TODO(vmarmol): Validation and cleanup of data. // TODO(vmarmol): Handle non-int64 data types. There is an issue with using omitempty since 0 is a valid value for us. value, ok := metric.Value.(int64) if !ok { return nil, fmt.Errorf("non-int64 data not implemented. Seen for metric %q", metric.Name) } // Use full label names. labels := make(map[string]string, len(metric.Labels)) for key, value := range metric.Labels { labels[FullLabelName(key)] = value } rateMetric, exists := gcmRateMetrics[metric.Name] if !exists { return nil, nil } key := lastValueKey{ metricName: FullMetricName(rateMetric.name), labels: util.LabelsToString(labels, ","), } lastValueRaw := self.lastValue.Get(key) self.lastValue.Put(key, lastValueData{ value: value, timestamp: metric.End, }) // We need two metrics to do a delta, skip first value. if lastValueRaw == nil { return nil, nil } lastValue, ok := lastValueRaw.(lastValueData) if !ok { return nil, nil } doubleValue := float64(value) doubleValue = float64(value-lastValue.value) / float64(metric.End.UnixNano()-lastValue.timestamp.UnixNano()) * float64(time.Second) // Translate to a float using the custom translation function. if transFunc, ok := translationFuncs[rateMetric.name]; ok { doubleValue = transFunc(doubleValue) } return &Timeseries{ TimeseriesDescriptor: timeseriesDescriptor{ Metric: FullMetricName(rateMetric.name), Labels: labels, }, Point: point{ Start: metric.End, End: metric.End, DoubleValue: &doubleValue, }, }, nil }
// Generate the labels. func (self *decoder) getPodLabels(pod *cache.PodElement) map[string]string { labels := make(map[string]string) labels[LabelPodId.Key] = pod.UID labels[LabelPodNamespace.Key] = pod.Namespace labels[LabelPodNamespaceUID.Key] = pod.NamespaceUID labels[LabelPodName.Key] = pod.Name labels[LabelLabels.Key] = util.LabelsToString(pod.Labels, ",") labels[LabelHostname.Key] = pod.Hostname labels[LabelHostID.Key] = pod.ExternalID return labels }
func (a *Api) exportMetrics(request *restful.Request, response *restful.Response) { points, err := a.manager.ExportMetrics() if err != nil { response.WriteError(http.StatusInternalServerError, err) return } // Group points by target labels. timeseriesForTargetLabels := map[string]*Timeseries{} for _, point := range points { targetLabels, otherLabels := separateLabels(point.Labels) labelsStr := util.LabelsToString(targetLabels, ",") // Add timeseries if it does not exist. timeseries, ok := timeseriesForTargetLabels[labelsStr] if !ok { timeseries = &Timeseries{ Metrics: map[string][]Point{}, Labels: targetLabels, } timeseriesForTargetLabels[labelsStr] = timeseries } // Add point to this timeseries timeseries.Metrics[point.Name] = append(timeseries.Metrics[point.Name], Point{ Start: point.Start, End: point.End, Labels: otherLabels, Value: point.Value, }) } // Turn into a slice. timeseries := make([]*Timeseries, 0, len(timeseriesForTargetLabels)) for _, val := range timeseriesForTargetLabels { timeseries = append(timeseries, val) } response.WriteEntity(timeseries) }
func (self *decoder) getContainerMetrics(container *cache.ContainerElement, labels map[string]string) []Timeseries { if container == nil { return nil } labels[LabelContainerName.Key] = container.Name labels[LabelContainerBaseImage.Key] = container.Image // Add container specific labels along with existing labels. containerLabels := util.LabelsToString(container.Labels, ",") if labels[LabelLabels.Key] != "" { containerLabels = fmt.Sprintf("%s,%s", labels[LabelLabels.Key], containerLabels) } labels[LabelLabels.Key] = containerLabels if _, exists := labels[LabelHostID.Key]; !exists { labels[LabelHostID.Key] = container.ExternalID } // One metric value per data point. var result []Timeseries labelsAsString := util.LabelsToString(labels, ",") for _, metric := range container.Metrics { if metric == nil || metric.Spec == nil || metric.Stats == nil { continue } // Add all supported metrics that have values. for index, supported := range self.supportedStatMetrics { // Finest allowed granularity is seconds. metric.Stats.Timestamp = metric.Stats.Timestamp.Round(time.Second) key := timeseriesKey{ Name: supported.Name, Labels: labelsAsString, } // TODO: remove this once the heapster source is tested to not provide duplicate metric.Statss. if data, ok := self.lastExported[key]; ok && data.After(metric.Stats.Timestamp) { continue } if supported.HasValue(metric.Spec) { // Cumulative metric.Statss have container creation time as their start time. var startTime time.Time if supported.Type == MetricCumulative { startTime = metric.Spec.CreationTime } else { startTime = metric.Stats.Timestamp } points := supported.GetValue(metric.Spec, metric.Stats) for _, point := range points { labels := util.CopyLabels(labels) for name, value := range point.Labels { labels[name] = value } timeseries := Timeseries{ MetricDescriptor: &self.supportedStatMetrics[index].MetricDescriptor, Point: &Point{ Name: supported.Name, Labels: labels, Start: startTime.Round(time.Second), End: metric.Stats.Timestamp, Value: point.Value, }, } result = append(result, timeseries) } } self.lastExported[key] = metric.Stats.Timestamp } } return result }