Example #1
0
func checkCallsExpectation(prog *ssa.Program, e *expectation, cg *callgraph.Graph) bool {
	found := make(map[string]int)
	err := callgraph.GraphVisitEdges(cg, func(edge *callgraph.Edge) error {
		// Name-based matching is inefficient but it allows us to
		// match functions whose names that would not appear in an
		// index ("<root>") or which are not unique ("[email protected]").
		if edge.Caller.Func.String() == e.args[0] {
			calleeStr := edge.Callee.Func.String()
			if calleeStr == e.args[1] {
				return errOK // expectation satisified; stop the search
			}
			found[calleeStr]++
		}
		return nil
	})
	if err == errOK {
		return true
	}
	if len(found) == 0 {
		e.errorf("didn't find any calls from %s", e.args[0])
	}
	e.errorf("found no call from %s to %s, but only to %s",
		e.args[0], e.args[1], join(found))
	return false
}
Example #2
0
func printGraph(cg *callgraph.Graph, from *types.Package) string {
	var edges []string
	callgraph.GraphVisitEdges(cg, func(e *callgraph.Edge) error {
		if strings.Contains(e.Description(), "dynamic") {
			edges = append(edges, fmt.Sprintf("%s --> %s",
				e.Caller.Func.RelString(from),
				e.Callee.Func.RelString(from)))
		}
		return nil
	})
	sort.Strings(edges)

	var buf bytes.Buffer
	buf.WriteString("Dynamic calls\n")
	for _, edge := range edges {
		fmt.Fprintf(&buf, "  %s\n", edge)
	}
	return strings.TrimSpace(buf.String())
}
Example #3
0
func printResult(res *rta.Result, from *types.Package) string {
	var buf bytes.Buffer

	writeSorted := func(ss []string) {
		sort.Strings(ss)
		for _, s := range ss {
			fmt.Fprintf(&buf, "  %s\n", s)
		}
	}

	buf.WriteString("Dynamic calls\n")
	var edges []string
	callgraph.GraphVisitEdges(res.CallGraph, func(e *callgraph.Edge) error {
		if strings.Contains(e.Description(), "dynamic") {
			edges = append(edges, fmt.Sprintf("%s --> %s",
				e.Caller.Func.RelString(from),
				e.Callee.Func.RelString(from)))
		}
		return nil
	})
	writeSorted(edges)

	buf.WriteString("Reachable functions\n")
	var reachable []string
	for f := range res.Reachable {
		reachable = append(reachable, f.RelString(from))
	}
	writeSorted(reachable)

	buf.WriteString("Reflect types\n")
	var rtypes []string
	res.RuntimeTypes.Iterate(func(key types.Type, value interface{}) {
		if value == false { // accessible to reflection
			rtypes = append(rtypes, types.TypeString(from, key))
		}
	})
	writeSorted(rtypes)

	return strings.TrimSpace(buf.String())
}
Example #4
0
func TestStatic(t *testing.T) {
	conf := loader.Config{ParserMode: parser.ParseComments}
	f, err := conf.ParseFile("P.go", input)
	if err != nil {
		t.Fatal(err)
	}

	conf.CreateFromFiles("P", f)
	iprog, err := conf.Load()
	if err != nil {
		t.Fatal(err)
	}

	P := iprog.Created[0].Pkg

	prog := ssa.Create(iprog, 0)
	prog.BuildAll()

	cg := static.CallGraph(prog)

	var edges []string
	callgraph.GraphVisitEdges(cg, func(e *callgraph.Edge) error {
		edges = append(edges, fmt.Sprintf("%s -> %s",
			e.Caller.Func.RelString(P),
			e.Callee.Func.RelString(P)))
		return nil
	})
	sort.Strings(edges)

	want := []string{
		"(*C).f -> (C).f",
		"f -> (C).f",
		"f -> f$1",
		"f -> g",
	}
	if !reflect.DeepEqual(edges, want) {
		t.Errorf("Got edges %v, want %v", edges, want)
	}
}
Example #5
0
// This program demonstrates how to use the pointer analysis to
// obtain a conservative call-graph of a Go program.
// It also shows how to compute the points-to set of a variable,
// in this case, (C).f's ch parameter.
//
func Example() {
	const myprog = `
package main

import "fmt"

type I interface {
	f(map[string]int)
}

type C struct{}

func (C) f(m map[string]int) {
	fmt.Println("C.f()")
}

func main() {
	var i I = C{}
	x := map[string]int{"one":1}
	i.f(x) // dynamic method call
}
`
	var conf loader.Config

	// Parse the input file, a string.
	// (Command-line tools should use conf.FromArgs.)
	file, err := conf.ParseFile("myprog.go", myprog)
	if err != nil {
		fmt.Print(err) // parse error
		return
	}

	// Create single-file main package and import its dependencies.
	conf.CreateFromFiles("main", file)

	iprog, err := conf.Load()
	if err != nil {
		fmt.Print(err) // type error in some package
		return
	}

	// Create SSA-form program representation.
	prog := ssa.Create(iprog, 0)
	mainPkg := prog.Package(iprog.Created[0].Pkg)

	// Build SSA code for bodies of all functions in the whole program.
	prog.BuildAll()

	// Configure the pointer analysis to build a call-graph.
	config := &pointer.Config{
		Mains:          []*ssa.Package{mainPkg},
		BuildCallGraph: true,
	}

	// Query points-to set of (C).f's parameter m, a map.
	C := mainPkg.Type("C").Type()
	Cfm := prog.LookupMethod(C, mainPkg.Object, "f").Params[1]
	config.AddQuery(Cfm)

	// Run the pointer analysis.
	result, err := pointer.Analyze(config)
	if err != nil {
		panic(err) // internal error in pointer analysis
	}

	// Find edges originating from the main package.
	// By converting to strings, we de-duplicate nodes
	// representing the same function due to context sensitivity.
	var edges []string
	callgraph.GraphVisitEdges(result.CallGraph, func(edge *callgraph.Edge) error {
		caller := edge.Caller.Func
		if caller.Pkg == mainPkg {
			edges = append(edges, fmt.Sprint(caller, " --> ", edge.Callee.Func))
		}
		return nil
	})

	// Print the edges in sorted order.
	sort.Strings(edges)
	for _, edge := range edges {
		fmt.Println(edge)
	}
	fmt.Println()

	// Print the labels of (C).f(m)'s points-to set.
	fmt.Println("m may point to:")
	var labels []string
	for _, l := range result.Queries[Cfm].PointsTo().Labels() {
		label := fmt.Sprintf("  %s: %s", prog.Fset.Position(l.Pos()), l)
		labels = append(labels, label)
	}
	sort.Strings(labels)
	for _, label := range labels {
		fmt.Println(label)
	}

	// Output:
	// (main.C).f --> fmt.Println
	// main.init --> fmt.init
	// main.main --> (main.C).f
	//
	// m may point to:
	//   myprog.go:18:21: makemap
}