// Field = Name Type [ string_lit ] . // func (p *parser) parseField() (*types.Var, string) { pkg, name := p.parseName(true) typ := p.parseType() anonymous := false if name == "" { // anonymous field - typ must be T or *T and T must be a type name switch typ := deref(typ).(type) { case *types.Basic: // basic types are named types pkg = nil name = typ.Name() case *types.Named: name = typ.Obj().Name() default: p.errorf("anonymous field expected") } anonymous = true } tag := "" if p.tok == scanner.String { s := p.expect(scanner.String) var err error tag, err = strconv.Unquote(s) if err != nil { p.errorf("invalid struct tag %s: %s", s, err) } } return types.NewField(token.NoPos, pkg, name, typ, anonymous), tag }
func (p *importer) field() *types.Var { pkg, name := p.qualifiedName() typ := p.typ() anonymous := false if name == "" { // anonymous field - typ must be T or *T and T must be a type name switch typ := deref(typ).(type) { case *types.Basic: // basic types are named types pkg = nil name = typ.Name() case *types.Named: obj := typ.Obj() name = obj.Name() // correct the field package for anonymous fields if exported(name) { pkg = p.pkgList[0] } default: panic("anonymous field expected") } anonymous = true } return types.NewField(token.NoPos, pkg, name, typ, anonymous) }
func initReflect(i *interpreter) { i.reflectPackage = &ssa.Package{ Prog: i.prog, Object: reflectTypesPackage, Members: make(map[string]ssa.Member), } // Clobber the type-checker's notion of reflect.Value's // underlying type so that it more closely matches the fake one // (at least in the number of fields---we lie about the type of // the rtype field). // // We must ensure that calls to (ssa.Value).Type() return the // fake type so that correct "shape" is used when allocating // variables, making zero values, loading, and storing. // // TODO(adonovan): obviously this is a hack. We need a cleaner // way to fake the reflect package (almost---DeepEqual is fine). // One approach would be not to even load its source code, but // provide fake source files. This would guarantee that no bad // information leaks into other packages. if r := i.prog.ImportedPackage("reflect"); r != nil { rV := r.Object.Scope().Lookup("Value").Type().(*types.Named) tEface := types.NewInterface(nil, nil).Complete() rV.SetUnderlying(types.NewStruct([]*types.Var{ types.NewField(token.NoPos, r.Object, "t", tEface, false), // a lie types.NewField(token.NoPos, r.Object, "v", tEface, false), }, nil)) } i.rtypeMethods = methodSet{ "Bits": newMethod(i.reflectPackage, rtypeType, "Bits"), "Elem": newMethod(i.reflectPackage, rtypeType, "Elem"), "Field": newMethod(i.reflectPackage, rtypeType, "Field"), "Kind": newMethod(i.reflectPackage, rtypeType, "Kind"), "NumField": newMethod(i.reflectPackage, rtypeType, "NumField"), "NumMethod": newMethod(i.reflectPackage, rtypeType, "NumMethod"), "NumOut": newMethod(i.reflectPackage, rtypeType, "NumOut"), "Out": newMethod(i.reflectPackage, rtypeType, "Out"), "Size": newMethod(i.reflectPackage, rtypeType, "Size"), "String": newMethod(i.reflectPackage, rtypeType, "String"), } i.errorMethods = methodSet{ "Error": newMethod(i.reflectPackage, errorType, "Error"), } }
// makeClosure creates a closure from a function pointer and // a set of bindings. The bindings are addresses of captured // variables. func (fr *frame) makeClosure(fn *govalue, bindings []*govalue) *govalue { govalues := append([]*govalue{fn}, bindings...) fields := make([]*types.Var, len(govalues)) for i, v := range govalues { field := types.NewField(0, nil, "_", v.Type(), false) fields[i] = field } block := fr.createTypeMalloc(types.NewStruct(fields, nil)) for i, v := range govalues { addressPtr := fr.builder.CreateStructGEP(block, i, "") fr.builder.CreateStore(v.value, addressPtr) } closure := fr.builder.CreateBitCast(block, fn.value.Type(), "") return newValue(closure, fn.Type()) }
// Field = Name Type [string] . func (p *parser) parseField(pkg *types.Package) (field *types.Var, tag string) { name := p.parseName() typ := p.parseType(pkg) anon := false if name == "" { anon = true switch typ := deref(typ).(type) { case *types.Basic: name = typ.Name() case *types.Named: name = typ.Obj().Name() default: p.error("anonymous field expected") } } field = types.NewField(token.NoPos, pkg, name, typ, anon) if p.tok == scanner.String { tag = p.parseString() } return }
// createThunk creates a thunk from a // given function and arguments, suitable for use with // "defer" and "go". func (fr *frame) createThunk(call ssa.CallInstruction) (thunk llvm.Value, arg llvm.Value) { seenarg := make(map[ssa.Value]bool) var args []ssa.Value var argtypes []*types.Var packArg := func(arg ssa.Value) { switch arg.(type) { case *ssa.Builtin, *ssa.Function, *ssa.Const, *ssa.Global: // Do nothing: we can generate these in the thunk default: if !seenarg[arg] { seenarg[arg] = true args = append(args, arg) field := types.NewField(0, nil, "_", arg.Type(), true) argtypes = append(argtypes, field) } } } packArg(call.Common().Value) for _, arg := range call.Common().Args { packArg(arg) } var isRecoverCall bool i8ptr := llvm.PointerType(llvm.Int8Type(), 0) var structllptr llvm.Type if len(args) == 0 { if builtin, ok := call.Common().Value.(*ssa.Builtin); ok { isRecoverCall = builtin.Name() == "recover" } if isRecoverCall { // When creating a thunk for recover(), we must pass fr.canRecover. arg = fr.builder.CreateZExt(fr.canRecover, fr.target.IntPtrType(), "") arg = fr.builder.CreateIntToPtr(arg, i8ptr, "") } else { arg = llvm.ConstPointerNull(i8ptr) } } else { structtype := types.NewStruct(argtypes, nil) arg = fr.createTypeMalloc(structtype) structllptr = arg.Type() for i, ssaarg := range args { argptr := fr.builder.CreateStructGEP(arg, i, "") fr.builder.CreateStore(fr.llvmvalue(ssaarg), argptr) } arg = fr.builder.CreateBitCast(arg, i8ptr, "") } thunkfntype := llvm.FunctionType(llvm.VoidType(), []llvm.Type{i8ptr}, false) thunkfn := llvm.AddFunction(fr.module.Module, "", thunkfntype) thunkfn.SetLinkage(llvm.InternalLinkage) fr.addCommonFunctionAttrs(thunkfn) thunkfr := newFrame(fr.unit, thunkfn) defer thunkfr.dispose() prologuebb := llvm.AddBasicBlock(thunkfn, "prologue") thunkfr.builder.SetInsertPointAtEnd(prologuebb) if isRecoverCall { thunkarg := thunkfn.Param(0) thunkarg = thunkfr.builder.CreatePtrToInt(thunkarg, fr.target.IntPtrType(), "") thunkfr.canRecover = thunkfr.builder.CreateTrunc(thunkarg, llvm.Int1Type(), "") } else if len(args) > 0 { thunkarg := thunkfn.Param(0) thunkarg = thunkfr.builder.CreateBitCast(thunkarg, structllptr, "") for i, ssaarg := range args { thunkargptr := thunkfr.builder.CreateStructGEP(thunkarg, i, "") thunkarg := thunkfr.builder.CreateLoad(thunkargptr, "") thunkfr.env[ssaarg] = newValue(thunkarg, ssaarg.Type()) } } _, isDefer := call.(*ssa.Defer) entrybb := llvm.AddBasicBlock(thunkfn, "entry") br := thunkfr.builder.CreateBr(entrybb) thunkfr.allocaBuilder.SetInsertPointBefore(br) thunkfr.builder.SetInsertPointAtEnd(entrybb) var exitbb llvm.BasicBlock if isDefer { exitbb = llvm.AddBasicBlock(thunkfn, "exit") thunkfr.runtime.setDeferRetaddr.call(thunkfr, llvm.BlockAddress(thunkfn, exitbb)) } if isDefer && isRecoverCall { thunkfr.callRecover(true) } else { thunkfr.callInstruction(call) } if isDefer { thunkfr.builder.CreateBr(exitbb) thunkfr.builder.SetInsertPointAtEnd(exitbb) } thunkfr.builder.CreateRetVoid() thunk = fr.builder.CreateBitCast(thunkfn, i8ptr, "") return }