func (bed BinaryVarintEncoderDecoder) Decode(r io.Reader, n *big.Float) error { var isInteger int8 var f float64 var exponent int32 n.SetUint64(0) if err := binary.Read(r, binary.BigEndian, &isInteger); err != nil { return err } if isInteger <= 0 { var x int64 var err error if x, err = binary.ReadVarint(miniByteReader{r}); err != nil { return err } n.SetInt64(x) n.SetPrec(ENCODER_DECODER_PREC) return nil } else { if err := binary.Read(r, binary.BigEndian, &f); err != nil { return err } if err := binary.Read(r, binary.BigEndian, &exponent); err != nil { return err } bed.tmp.SetFloat64(f) bed.tmp.SetPrec(ENCODER_DECODER_PREC) n.SetMantExp(bed.tmp, int(exponent)) return nil } }
func mandelbrotFloat(a, b *big.Float) color.Color { var x, y, nx, ny, x2, y2, f2, f4, r2, tmp big.Float f2.SetInt64(2) f4.SetInt64(4) x.SetInt64(0) y.SetInt64(0) defer func() { recover() }() for n := uint8(0); n < iterations; n++ { // Not update x2 and y2 // because they are already updated in the previous loop nx.Sub(&x2, &y2) nx.Add(&nx, a) tmp.Mul(&x, &y) ny.Mul(&f2, &tmp) ny.Add(&ny, b) x.Set(&nx) y.Set(&ny) x2.Mul(&x, &x) y2.Mul(&y, &y) r2.Add(&x2, &y2) if r2.Cmp(&f4) > 0 { return color.Gray{255 - contrast*n} } } return color.Black }
func ExampleFloat_Add() { // Operating on numbers of different precision. var x, y, z big.Float x.SetInt64(1000) // x is automatically set to 64bit precision y.SetFloat64(2.718281828) // y is automatically set to 53bit precision z.SetPrec(32) z.Add(&x, &y) fmt.Printf("x = %s (%s, prec = %d, acc = %s)\n", &x, x.Format('p', 0), x.Prec(), x.Acc()) fmt.Printf("y = %s (%s, prec = %d, acc = %s)\n", &y, y.Format('p', 0), y.Prec(), y.Acc()) fmt.Printf("z = %s (%s, prec = %d, acc = %s)\n", &z, z.Format('p', 0), z.Prec(), z.Acc()) // Output: // x = 1000 (0x.fap10, prec = 64, acc = Exact) // y = 2.718281828 (0x.adf85458248cd8p2, prec = 53, acc = Exact) // z = 1002.718282 (0x.faadf854p10, prec = 32, acc = Below) }
// Given a vector of real numbers x = [x_0, x_1, ..., x_n], this // uses the PSLQ algorithm to find a list of integers // [c_0, c_1, ..., c_n] such that // // |c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n| < tolerance // // and such that max |c_k| < maxcoeff. If no such vector exists, Pslq // returns one of the errors in this package depending on whether it // has run out of iterations, precision or explored up to the // maxcoeff. The tolerance defaults to 3/4 of the precision. // // This is a fairly direct translation of the pseudocode given by // David Bailey, "The PSLQ Integer Relation Algorithm": // http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html // // If a result is returned, the first non-zero element will be positive func (e *Pslq) Run(x []big.Float) ([]big.Int, error) { n := len(x) if n <= 1 { return nil, ErrorBadArguments } // At too low precision, the algorithm becomes meaningless if e.prec < 64 { return nil, ErrorPrecisionTooLow } if e.verbose && int(e.prec)/max(2, int(n)) < 5 { log.Printf("Warning: precision for PSLQ may be too low") } if e.verbose { log.Printf("PSLQ using prec %d and tol %g", e.prec, e.tol) } if e.tol.Sign() == 0 { return nil, ErrorToleranceRoundsToZero } // Temporary variables tmp0 := new(big.Float).SetPrec(e.prec) tmp1 := new(big.Float).SetPrec(e.prec) bigTmp := new(big.Int) // Convert to use 1-based indexing to allow us to be // consistent with Bailey's indexing. xNew := make([]big.Float, len(x)+1) minx := new(big.Float).SetPrec(e.prec) minxFirst := true for i, xk := range x { p := &xNew[i+1] p.Set(&xk) tmp0.Abs(p) if minxFirst || tmp0.Cmp(minx) < 0 { minxFirst = false minx.Set(tmp0) } } x = xNew if debug { printVector("x", x) } // Sanity check on magnitudes if minx.Sign() == 0 { return nil, ErrorZeroArguments } tmp1.SetInt64(128) tmp0.Quo(&e.tol, tmp1) if minx.Cmp(tmp0) < 0 { // minx < tol/128 return nil, ErrorArgumentTooSmall } tmp0.SetInt64(4) tmp1.SetInt64(3) tmp0.Quo(tmp0, tmp1) var γ big.Float e.Sqrt(tmp0, &γ) // sqrt(4<<prec)/3) if debug { fmt.Printf("γ = %f\n", &γ) } A := newBigIntMatrix(n+1, n+1) B := newBigIntMatrix(n+1, n+1) H := newMatrix(n+1, n+1) // Initialization Step 1 // // Set the n×n matrices A and B to the identity. for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { if i == j { A[i][j].SetInt64(1) B[i][j].SetInt64(1) } else { A[i][j].SetInt64(0) B[i][j].SetInt64(0) } H[i][j].SetInt64(0) } } if debug { printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Initialization Step 2 // // For k := 1 to n // compute s_k := sqrt( sum_j=k^n x_j^2 ) // endfor. // Set t = 1/s1. // For k := 1 to n: // y_k := t * x_k // s_k := t * s_k // endfor. s := make([]big.Float, n+1) for i := 1; i <= n; i++ { s[i].SetInt64(0) } for k := 1; k <= n; k++ { var t big.Float t.SetInt64(0) for j := k; j <= n; j++ { tmp0.Mul(&x[j], &x[j]) t.Add(&t, tmp0) } e.Sqrt(&t, &s[k]) } if debug { fmt.Println("Init Step 2") printVector("s", s) } var t big.Float t.Set(&s[1]) y := make([]big.Float, len(x)) copy(y, x) for k := 1; k <= n; k++ { // y[k] = (x[k] << prec) / t y[k].Quo(&x[k], &t) // s[k] = (s[k] << prec) / t s[k].Quo(&s[k], &t) } if debug { printVector("y", y) printVector("s", s) } // Init Step 3 // // Compute the n×(n−1) matrix H as follows: // For i := 1 to n: // for j := i + 1 to n − 1: // set Hij := 0 // endfor // if i ≤ n − 1 then set Hii := s_(i+1)/s_i // for j := 1 to i−1: // set Hij := −y_i * y_j / (s_j * s_(j+1)) // endfor // endfor for i := 1; i <= n; i++ { for j := i + 1; j < n; j++ { H[i][j].SetInt64(0) } if i <= n-1 { if s[i].Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } // H[i][i] = (s[i+1] << prec) / s[i] H[i][i].Quo(&s[i+1], &s[i]) } for j := 1; j < i; j++ { var sjj1 big.Float sjj1.Mul(&s[j], &s[j+1]) if debug { fmt.Printf("sjj1 = %f\n", &sjj1) } if sjj1.Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } // H[i][j] = ((-y[i] * y[j]) << prec) / sjj1 tmp0.Mul(&y[i], &y[j]) tmp0.Neg(tmp0) H[i][j].Quo(tmp0, &sjj1) } } if debug { fmt.Println("Init Step 3") printMatrix("H", H) } // Init Step 4 // // Perform full reduction on H, simultaneously updating y, A and B: // // For i := 2 to n: // for j := i−1 to 1 step−1: // t := nint(Hij/Hjj) // y_j := y_j + t * y_i // for k := 1 to j: // Hik := Hik − t * Hjk // endfor // for k := 1 to n: // Aik := Aik − t * Ajk // Bkj := Bkj + t * Bki // endfor // endfor // endfor for i := 2; i <= n; i++ { for j := i - 1; j > 0; j-- { //t = floor(H[i][j]/H[j,j] + 0.5) var t big.Int var tFloat big.Float if H[j][j].Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } tmp0.Quo(&H[i][j], &H[j][j]) e.NearestInt(tmp0, &t) tFloat.SetInt(&t).SetPrec(e.prec) if debug { fmt.Printf("H[i][j]=%f\n", &H[i][j]) fmt.Printf("H[j][j]=%f\n", &H[j][j]) fmt.Printf("tmp=%f\n", tmp0) fmt.Printf("t=%d\n", &t) } // y[j] = y[j] + (t * y[i] >> prec) tmp0.Mul(&y[i], &tFloat) y[j].Add(&y[j], tmp0) for k := 1; k <= j; k++ { // H[i][k] = H[i][k] - (t * H[j][k] >> prec) tmp0.Mul(&H[j][k], &tFloat) H[i][k].Sub(&H[i][k], tmp0) } for k := 1; k <= n; k++ { bigTmp.Mul(&t, &A[j][k]) A[i][k].Sub(&A[i][k], bigTmp) bigTmp.Mul(&t, &B[k][i]) B[k][j].Add(&B[k][j], bigTmp) } } } if debug { fmt.Println("Init Step 4") printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Main algorithm var REP int var norm big.Int vec := make([]big.Int, n) for REP = 0; REP < e.maxsteps; REP++ { // Step 1 // // Select m such that γ^i * |Hii| is maximal when i = m. m := -1 var szmax big.Float szmax.SetInt64(-1) var γPower big.Float γPower.Set(&γ) for i := 1; i < n; i++ { var absH big.Float absH.Abs(&H[i][i]) var sz big.Float sz.Mul(&γPower, &absH) // sz := (g**i * abs(h)) >> (prec * (i - 1)) if sz.Cmp(&szmax) > 0 { m = i szmax.Set(&sz) } γPower.Mul(&γPower, &γ) } if debug { fmt.Println("Step 1") fmt.Printf("szmax=%f\n", &szmax) fmt.Printf("m=%d\n", m) } // Step 2 // // Exchange entries m and m+1 of y, corresponding rows // of A and H, and corresponding columns of B. y[m], y[m+1] = y[m+1], y[m] for i := 1; i < n+1; i++ { H[m][i], H[m+1][i] = H[m+1][i], H[m][i] } for i := 1; i < n+1; i++ { A[m][i], A[m+1][i] = A[m+1][i], A[m][i] } for i := 1; i < n+1; i++ { B[i][m], B[i][m+1] = B[i][m+1], B[i][m] } if debug { fmt.Println("Step 2") printVector("y", y) printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Step 3 // // If m ≤ n−2 then update H as follows: // // t0 := sqrt( Hmm^2 + H(m,m+1)^2 ) // t1 := Hmm/t0 // t2 := H(m,m+1)/t0. // for i := m to n: // t3 := Him // t4 := Hi,m+1 // Him := t1t3 +t2t4 // Hi,m+1 := −t2t3 +t1t4 // endfor. if m <= n-2 { tmp0.Mul(&H[m][m], &H[m][m]) tmp1.Mul(&H[m][m+1], &H[m][m+1]) tmp0.Add(tmp0, tmp1) var t0 big.Float e.Sqrt(tmp0, &t0) // Precision probably exhausted if t0.Sign() == 0 { return nil, ErrorPrecisionExhausted } var t1, t2 big.Float t1.Quo(&H[m][m], &t0) t2.Quo(&H[m][m+1], &t0) for i := m; i <= n; i++ { var t3, t4 big.Float t3.Set(&H[i][m]) t4.Set(&H[i][m+1]) // H[i][m] = (t1*t3 + t2*t4) >> prec tmp0.Mul(&t1, &t3) tmp1.Mul(&t2, &t4) H[i][m].Add(tmp0, tmp1) // H[i][m+1] = (-t2*t3 + t1*t4) >> prec tmp0.Mul(&t2, &t3) tmp1.Mul(&t1, &t4) H[i][m+1].Sub(tmp1, tmp0) } } if debug { fmt.Println("Step 3") printMatrix("H", H) } // Step 4 // Perform block reduction on H, simultaneously updating y, A and B: // // For i := m+1 to n: // for j := min(i−1, m+1) to 1 step −1: // t := nint(Hij/Hjj) // yj := yj + t * yi // for k := 1 to j: // Hik := Hik − tHjk // endfor // for k := 1 to n: // Aik := Aik −tAjk // Bkj := Bkj +tBki // endfor // endfor // endfor. for i := m + 1; i <= n; i++ { var t big.Int var tFloat big.Float for j := min(i-1, m+1); j > 0; j-- { if H[j][j].Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } tmp0.Quo(&H[i][j], &H[j][j]) e.NearestInt(tmp0, &t) tFloat.SetInt(&t).SetPrec(e.prec) // y[j] = y[j] + ((t * y[i]) >> prec) tmp0.Mul(&y[i], &tFloat) y[j].Add(&y[j], tmp0) for k := 1; k <= j; k++ { // H[i][k] = H[i][k] - (t * H[j][k] >> prec) tmp0.Mul(&H[j][k], &tFloat) H[i][k].Sub(&H[i][k], tmp0) } for k := 1; k <= n; k++ { bigTmp.Mul(&t, &A[j][k]) A[i][k].Sub(&A[i][k], bigTmp) bigTmp.Mul(&t, &B[k][i]) B[k][j].Add(&B[k][j], bigTmp) } } } if debug { fmt.Println("Step 4") printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Step 6 // // Termination test: If the largest entry of A exceeds // the level of numeric precision used, then precision // is exhausted. If the smallest entry of the y vector // is less than the detection threshold, a relation // has been detected and is given in the corresponding // column of B. // // Until a relation is found, the error typically decreases // slowly (e.g. a factor 1-10) with each step TODO: we could // compare err from two successive iterations. If there is a // large drop (several orders of magnitude), that indicates a // "high quality" relation was detected. Reporting this to // the user somehow might be useful. maxAPrecision := 0 for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { precision := A[i][j].BitLen() if precision > maxAPrecision { maxAPrecision = precision } } } if debug { log.Printf("Max A precision = %d, precision = %d, tolerance %d, ratio = %.3f\n", maxAPrecision, e.prec, e.target, float64(maxAPrecision)/float64(e.target)) } if float64(maxAPrecision)/float64(e.target) > 0.85 { if e.verbose { log.Printf("CANCELLING after step %d/%d.", REP, e.maxsteps) } return nil, ErrorPrecisionExhausted } var best_err big.Float best_err.Set(&e.maxcoeff_fp) for i := 1; i <= n; i++ { var err big.Float err.Abs(&y[i]) // Maybe we are done? if err.Cmp(&e.tol) < 0 { // We are done if the coefficients are acceptable var maxc big.Int for j := 1; j <= n; j++ { if debug { fmt.Printf("vec[%d]=%d\n", j-1, &B[j][i]) } t := B[j][i] if debug { fmt.Printf("vec[%d]=%d\n", j-1, t) } vec[j-1] = t if t.Sign() < 0 { t.Neg(&t) } if t.Cmp(&maxc) > 0 { maxc.Set(&t) } } if debug { fmt.Printf("maxc = %d, maxcoeff = %d\n", maxc, e.maxcoeff) } if maxc.Cmp(&e.maxcoeff) < 0 { if e.verbose { log.Printf("FOUND relation at iter %d/%d, error: %g", REP, e.maxsteps, &err) } // Find sign of first non zero item sign := 0 for i := range vec { sign = vec[i].Sign() if sign != 0 { break } } // Normalise vec making first non-zero argument positive if sign < 0 { for i := range vec { vec[i].Neg(&vec[i]) } } return vec, nil } } if err.Cmp(&best_err) < 0 { best_err = err } } // Step 5 // // Norm bound: Compute M := 1/maxj |Hj|, where Hj // denotes the j-th row of H. // // Then there can exist no relation vector whose // Euclidean norm is less than M. // // Calculate a lower bound for the norm. We could do this // more exactly (using the Euclidean norm) but there is probably // no practical benefit. var recnorm big.Float recnorm.SetInt64(0) for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { tmp0.Abs(&H[i][j]) if tmp0.Cmp(&recnorm) > 0 { recnorm.Set(tmp0) } } } norm.Set(&e.maxcoeff) if recnorm.Sign() != 0 { // norm = ((1 << (2 * prec)) / recnorm) >> prec tmp0.Quo(&e.one, &recnorm) tmp0.Int(&norm) } if e.verbose { log.Printf("%2d/%2d: Error: %g Norm: %d", REP, e.maxsteps, &best_err, &norm) } if norm.Cmp(&e.maxcoeff) >= 0 { if e.verbose { log.Printf("CANCELLING after step %d/%d.", REP, e.maxsteps) log.Printf("Could not find an integer relation. Norm bound: %d", &norm) } return nil, ErrorNoRelationFound } } if e.verbose { log.Printf("CANCELLING after step %d/%d.", REP, e.maxsteps) log.Printf("Could not find an integer relation. Norm bound: %d", &norm) } return nil, ErrorIterationsExceeded }
func renderFloat(img *image.RGBA) { var yminF, ymaxMinF, heightF big.Float yminF.SetInt64(ymin) ymaxMinF.SetInt64(ymax - ymin) heightF.SetInt64(height) var xminF, xmaxMinF, widthF big.Float xminF.SetInt64(xmin) xmaxMinF.SetInt64(xmax - xmin) widthF.SetInt64(width) var y, x big.Float for py := int64(0); py < height; py++ { // y := float64(py)/height*(ymax-ymin) + ymin y.SetInt64(py) y.Quo(&y, &heightF) y.Mul(&y, &ymaxMinF) y.Add(&y, &yminF) for px := int64(0); px < width; px++ { // x := float64(px)/width*(xmax-xmin) + xmin x.SetInt64(px) x.Quo(&x, &widthF) x.Mul(&x, &xmaxMinF) x.Add(&x, &xminF) c := mandelbrotFloat(&x, &y) if c == nil { c = color.Black } img.Set(int(px), int(py), c) } } }