/* * generate byte multiply: * res = nl * nr * there is no 2-operand byte multiply instruction so * we do a full-width multiplication and truncate afterwards. */ func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool { if optoas(op, nl.Type) != x86.AIMULB { return false } // largest ullman on left. if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } // generate operands in "8-bit" registers. var n1b gc.Node gc.Regalloc(&n1b, nl.Type, res) gc.Cgen(nl, &n1b) var n2b gc.Node gc.Regalloc(&n2b, nr.Type, nil) gc.Cgen(nr, &n2b) // perform full-width multiplication. t := gc.Types[gc.TUINT64] if gc.Issigned[nl.Type.Etype] { t = gc.Types[gc.TINT64] } var n1 gc.Node gc.Nodreg(&n1, t, int(n1b.Reg)) var n2 gc.Node gc.Nodreg(&n2, t, int(n2b.Reg)) a := optoas(op, t) gins(a, &n2, &n1) // truncate. gmove(&n1, res) gc.Regfree(&n1b) gc.Regfree(&n2b) return true }
/* * generate division. * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will trap. // Also the byte divide instruction needs AH, // which we otherwise don't have to deal with. // Easiest way to avoid for int8, int16: use int32. // For int32 and int64, use explicit test. // Could use int64 hw for int32. t := nl.Type t0 := t check := 0 if gc.Issigned[t.Etype] { check = 1 if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) { check = 0 } else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 { check = 0 } } if t.Width < 4 { if gc.Issigned[t.Etype] { t = gc.Types[gc.TINT32] } else { t = gc.Types[gc.TUINT32] } check = 0 } a := optoas(op, t) var n3 gc.Node gc.Regalloc(&n3, t0, nil) var ax gc.Node var oldax gc.Node if nl.Ullman >= nr.Ullman { savex(x86.REG_AX, &ax, &oldax, res, t0) gc.Cgen(nl, &ax) gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen gc.Cgen(nr, &n3) gc.Regfree(&ax) } else { gc.Cgen(nr, &n3) savex(x86.REG_AX, &ax, &oldax, res, t0) gc.Cgen(nl, &ax) } if t != t0 { // Convert ax1 := ax n31 := n3 ax.Type = t n3.Type = t gmove(&ax1, &ax) gmove(&n31, &n3) } var n4 gc.Node if gc.Nacl { // Native Client does not relay the divide-by-zero trap // to the executing program, so we must insert a check // for ourselves. gc.Nodconst(&n4, t, 0) gins(optoas(gc.OCMP, t), &n3, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) } var p2 *obj.Prog if check != 0 { gc.Nodconst(&n4, t, -1) gins(optoas(gc.OCMP, t), &n3, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, &ax) gmove(&ax, res) } else { // a % (-1) is 0. gc.Nodconst(&n4, t, 0) gmove(&n4, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } var olddx gc.Node var dx gc.Node savex(x86.REG_DX, &dx, &olddx, res, t) if !gc.Issigned[t.Etype] { gc.Nodconst(&n4, t, 0) gmove(&n4, &dx) } else { gins(optoas(gc.OEXTEND, t), nil, nil) } gins(a, &n3, nil) gc.Regfree(&n3) if op == gc.ODIV { gmove(&ax, res) } else { gmove(&dx, res) } restx(&dx, &olddx) if check != 0 { gc.Patch(p2, gc.Pc) } restx(&ax, &oldax) }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(gc.Mpgetfix(nr.Val.U.Xval)) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 var n3 gc.Node gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n1) gins(a, &n3, &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nl.Ullman >= gc.UINF { var n4 gc.Node gc.Tempname(&n4, nl.Type) gc.Cgen(nl, &n4) nl = &n4 } if nr.Ullman >= gc.UINF { var n5 gc.Node gc.Tempname(&n5, nr.Type) gc.Cgen(nr, &n5) nr = &n5 } rcx := int(reg[x86.REG_CX]) var n1 gc.Node gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) // Allow either uint32 or uint64 as shift type, // to avoid unnecessary conversion from uint32 to uint64 // just to do the comparison. tcount := gc.Types[gc.Simtype[nr.Type.Etype]] if tcount.Etype < gc.TUINT32 { tcount = gc.Types[gc.TUINT32] } gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX var n3 gc.Node gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX) var oldcx gc.Node if rcx > 0 && !gc.Samereg(&cx, res) { gc.Regalloc(&oldcx, gc.Types[gc.TUINT64], nil) gmove(&cx, &oldcx) } cx.Type = tcount var n2 gc.Node if gc.Samereg(&cx, res) { gc.Regalloc(&n2, nl.Type, nil) } else { gc.Regalloc(&n2, nl.Type, res) } if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) gmove(&n1, &n3) } else { gc.Cgen(nr, &n1) gmove(&n1, &n3) gc.Cgen(nl, &n2) } gc.Regfree(&n3) // test and fix up large shifts if !bounded { gc.Nodconst(&n3, tcount, nl.Type.Width*8) gins(optoas(gc.OCMP, tcount), &n1, &n3) p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1) if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n2) } else { gc.Nodconst(&n3, nl.Type, 0) gmove(&n3, &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) if oldcx.Op != 0 { cx.Type = gc.Types[gc.TUINT64] gmove(&oldcx, &cx) gc.Regfree(&oldcx) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate code to compute address of n, * a reference to a (perhaps nested) field inside * an array or struct. * return 0 on failure, 1 on success. * on success, leaves usable address in a. * * caller is responsible for calling sudoclean * after successful sudoaddable, * to release the register used for a. */ func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool { if n.Type == nil { return false } *a = obj.Addr{} switch n.Op { case gc.OLITERAL: if !gc.Isconst(n, gc.CTINT) { break } v := gc.Mpgetfix(n.Val.U.Xval) if v >= 32000 || v <= -32000 { break } switch as { default: return false case x86.AADDB, x86.AADDW, x86.AADDL, x86.AADDQ, x86.ASUBB, x86.ASUBW, x86.ASUBL, x86.ASUBQ, x86.AANDB, x86.AANDW, x86.AANDL, x86.AANDQ, x86.AORB, x86.AORW, x86.AORL, x86.AORQ, x86.AXORB, x86.AXORW, x86.AXORL, x86.AXORQ, x86.AINCB, x86.AINCW, x86.AINCL, x86.AINCQ, x86.ADECB, x86.ADECW, x86.ADECL, x86.ADECQ, x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ: break } cleani += 2 reg := &clean[cleani-1] reg1 := &clean[cleani-2] reg.Op = gc.OEMPTY reg1.Op = gc.OEMPTY gc.Naddr(a, n) return true case gc.ODOT, gc.ODOTPTR: cleani += 2 reg := &clean[cleani-1] reg1 := &clean[cleani-2] reg.Op = gc.OEMPTY reg1.Op = gc.OEMPTY var nn *gc.Node var oary [10]int64 o := gc.Dotoffset(n, oary[:], &nn) if nn == nil { sudoclean() return false } if nn.Addable && o == 1 && oary[0] >= 0 { // directly addressable set of DOTs n1 := *nn n1.Type = n.Type n1.Xoffset += oary[0] gc.Naddr(a, &n1) return true } gc.Regalloc(reg, gc.Types[gc.Tptr], nil) n1 := *reg n1.Op = gc.OINDREG if oary[0] >= 0 { gc.Agen(nn, reg) n1.Xoffset = oary[0] } else { gc.Cgen(nn, reg) gc.Cgen_checknil(reg) n1.Xoffset = -(oary[0] + 1) } for i := 1; i < o; i++ { if oary[i] >= 0 { gc.Fatal("can't happen") } gins(movptr, &n1, reg) gc.Cgen_checknil(reg) n1.Xoffset = -(oary[i] + 1) } a.Type = obj.TYPE_NONE a.Index = obj.TYPE_NONE gc.Fixlargeoffset(&n1) gc.Naddr(a, &n1) return true case gc.OINDEX: return false } return false }