Exemple #1
0
// Max returns the MAP state given a valuation.
func (g *Gaussian) Max(val VarSet) float64 {
	v, ok := val[g.varid]
	if ok {
		z := math.Log(float64(C.gsl_ran_ugaussian_pdf(C.double((float64(v) - g.mean) / g.sd))))
		return z
	}
	return math.Log(GaussMax)
}
Exemple #2
0
// ArgMax returns both the arguments and the value of the MAP state given a certain valuation.
func (g *Gaussian) ArgMax(val VarSet) (VarSet, float64) {
	retval := make(VarSet)
	v, ok := val[g.varid]

	if ok {
		retval[g.varid] = v
		z := math.Log(float64(C.gsl_ran_ugaussian_pdf(C.double((float64(v) - g.mean) / g.sd))))
		return retval, z
	}

	retval[g.varid] = int(g.mean)
	return retval, math.Log(GaussMax)
}
Exemple #3
0
// Soft is a common base for all soft inference methods.
func (g *Gaussian) Soft(val VarSet, key string) float64 {
	if _lv, ok := g.Stored(key); ok && g.stores {
		return _lv
	}

	v, ok := val[g.varid]
	var l float64
	if ok {
		l = float64(C.gsl_ran_ugaussian_pdf(C.double((float64(v) - g.mean) / g.sd)))
	} else {
		l = 1.0
	}
	g.Store(key, l)

	return l
}
Exemple #4
0
// LSoft is Soft in logspace.
func (g *Gaussian) LSoft(val VarSet, key string) float64 {
	_lv := g.s[key]
	if _lv >= 0 {
		return _lv
	}

	v, ok := val[g.varid]
	var l float64
	if ok {
		l = math.Log(float64(C.gsl_ran_ugaussian_pdf(C.double((float64(v) - g.mean) / g.sd))))
	} else {
		l = 0.0 // ln(1.0) = 0.0
	}
	g.Store(key, l)

	return l
}
Exemple #5
0
func UgaussianPdf(x float64) float64 {
	return float64(C.gsl_ran_ugaussian_pdf(C.double(x)))
}