/* * generate an addressable node in res, containing the value of n. * n is an array index, and might be any size; res width is <= 32-bit. * returns Prog* to patch to panic call. */ func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog { if !gc.Is64(n.Type) { if n.Addable && (gc.Simtype[n.Etype] == gc.TUINT32 || gc.Simtype[n.Etype] == gc.TINT32) { // nothing to do. *res = *n } else { gc.Tempname(res, gc.Types[gc.TUINT32]) gc.Cgen(n, res) } return nil } var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT64]) gc.Cgen(n, &tmp) var lo gc.Node var hi gc.Node split64(&tmp, &lo, &hi) gc.Tempname(res, gc.Types[gc.TUINT32]) gmove(&lo, res) if bounded { splitclean() return nil } var zero gc.Node gc.Nodconst(&zero, gc.Types[gc.TINT32], 0) gins(x86.ACMPL, &hi, &zero) splitclean() return gc.Gbranch(x86.AJNE, nil, +1) }
/* * generate byte multiply: * res = nl * nr * there is no 2-operand byte multiply instruction so * we do a full-width multiplication and truncate afterwards. */ func cgen_bmul(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) bool { if optoas(op, nl.Type) != x86.AIMULB { return false } // copy from byte to full registers t := gc.Types[gc.TUINT32] if nl.Type.IsSigned() { t = gc.Types[gc.TINT32] } // largest ullman on left. if nl.Ullman < nr.Ullman { nl, nr = nr, nl } var nt gc.Node gc.Tempname(&nt, nl.Type) gc.Cgen(nl, &nt) var n1 gc.Node gc.Regalloc(&n1, t, res) gc.Cgen(nr, &n1) var n2 gc.Node gc.Regalloc(&n2, t, nil) gmove(&nt, &n2) a := optoas(op, t) gins(a, &n2, &n1) gc.Regfree(&n2) gmove(&n1, res) gc.Regfree(&n1) return true }
/* * generate array index into res. * n might be any size; res is 32-bit. * returns Prog* to patch to panic call. */ func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog { if !gc.Is64(n.Type) { gc.Cgen(n, res) return nil } var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT64]) gc.Cgen(n, &tmp) var lo gc.Node var hi gc.Node split64(&tmp, &lo, &hi) gmove(&lo, res) if bounded { splitclean() return nil } var n1 gc.Node gc.Regalloc(&n1, gc.Types[gc.TINT32], nil) var n2 gc.Node gc.Regalloc(&n2, gc.Types[gc.TINT32], nil) var zero gc.Node gc.Nodconst(&zero, gc.Types[gc.TINT32], 0) gmove(&hi, &n1) gmove(&zero, &n2) gins(arm.ACMP, &n1, &n2) gc.Regfree(&n2) gc.Regfree(&n1) splitclean() return gc.Gbranch(arm.ABNE, nil, -1) }
func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { r := gc.GetReg(dr) gc.Nodreg(x, gc.Types[gc.TINT32], dr) // save current ax and dx if they are live // and not the destination *oldx = gc.Node{} if r > 0 && !gc.Samereg(x, res) { gc.Tempname(oldx, gc.Types[gc.TINT32]) gmove(x, oldx) } gc.Regalloc(x, t, x) }
/* * generate floating-point operation. */ func cgen_float(n *gc.Node, res *gc.Node) { nl := n.Left switch n.Op { case gc.OEQ, gc.ONE, gc.OLT, gc.OLE, gc.OGE: p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Pc gmove(gc.Nodbool(true), res) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) gc.Bgen(n, true, 0, p2) gmove(gc.Nodbool(false), res) gc.Patch(p3, gc.Pc) return case gc.OPLUS: gc.Cgen(nl, res) return case gc.OCONV: if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) { gc.Cgen(nl, res) return } var n2 gc.Node gc.Tempname(&n2, n.Type) var n1 gc.Node gc.Mgen(nl, &n1, res) gmove(&n1, &n2) gmove(&n2, res) gc.Mfree(&n1) return } if gc.Thearch.Use387 { cgen_float387(n, res) } else { cgen_floatsse(n, res) } }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { var n1 gc.Node var n2 gc.Node t := nl.Type a := optoas(gc.OHMUL, t) // gen nl in n1. gc.Tempname(&n1, t) gc.Cgen(nl, &n1) // gen nr in n2. gc.Regalloc(&n2, t, res) gc.Cgen(nr, &n2) var ax, oldax, dx, olddx gc.Node savex(x86.REG_AX, &ax, &oldax, res, gc.Types[gc.TUINT32]) savex(x86.REG_DX, &dx, &olddx, res, gc.Types[gc.TUINT32]) gmove(&n2, &ax) gins(a, &n1, nil) gc.Regfree(&n2) if t.Width == 1 { // byte multiply behaves differently. var byteAH, byteDX gc.Node gc.Nodreg(&byteAH, t, x86.REG_AH) gc.Nodreg(&byteDX, t, x86.REG_DX) gmove(&byteAH, &byteDX) } gmove(&dx, res) restx(&ax, &oldax) restx(&dx, &olddx) }
func bgen_float(n *gc.Node, wantTrue bool, likely int, to *obj.Prog) { nl := n.Left nr := n.Right op := n.Op if !wantTrue { // brcom is not valid on floats when NaN is involved. p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // No need to avoid re-genning ninit. bgen_float(n, true, -likely, p2) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p2, gc.Pc) return } if gc.Thearch.Use387 { op = gc.Brrev(op) // because the args are stacked if op == gc.OGE || op == gc.OGT { // only < and <= work right with NaN; reverse if needed nl, nr = nr, nl op = gc.Brrev(op) } var ax, n2, tmp gc.Node gc.Nodreg(&tmp, nr.Type, x86.REG_F0) gc.Nodreg(&n2, nr.Type, x86.REG_F0+1) gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX) if gc.Simsimtype(nr.Type) == gc.TFLOAT64 { if nl.Ullman > nr.Ullman { gc.Cgen(nl, &tmp) gc.Cgen(nr, &tmp) gins(x86.AFXCHD, &tmp, &n2) } else { gc.Cgen(nr, &tmp) gc.Cgen(nl, &tmp) } gins(x86.AFUCOMPP, &tmp, &n2) } else { // TODO(rsc): The moves back and forth to memory // here are for truncating the value to 32 bits. // This handles 32-bit comparison but presumably // all the other ops have the same problem. // We need to figure out what the right general // solution is, besides telling people to use float64. var t1 gc.Node gc.Tempname(&t1, gc.Types[gc.TFLOAT32]) var t2 gc.Node gc.Tempname(&t2, gc.Types[gc.TFLOAT32]) gc.Cgen(nr, &t1) gc.Cgen(nl, &t2) gmove(&t2, &tmp) gins(x86.AFCOMFP, &t1, &tmp) } gins(x86.AFSTSW, nil, &ax) gins(x86.ASAHF, nil, nil) } else { // Not 387 if !nl.Addable { nl = gc.CgenTemp(nl) } if !nr.Addable { nr = gc.CgenTemp(nr) } var n2 gc.Node gc.Regalloc(&n2, nr.Type, nil) gmove(nr, &n2) nr = &n2 if nl.Op != gc.OREGISTER { var n3 gc.Node gc.Regalloc(&n3, nl.Type, nil) gmove(nl, &n3) nl = &n3 } if op == gc.OGE || op == gc.OGT { // only < and <= work right with NopN; reverse if needed nl, nr = nr, nl op = gc.Brrev(op) } gins(foptoas(gc.OCMP, nr.Type, 0), nl, nr) if nl.Op == gc.OREGISTER { gc.Regfree(nl) } gc.Regfree(nr) } switch op { case gc.OEQ: // neither NE nor P p1 := gc.Gbranch(x86.AJNE, nil, -likely) p2 := gc.Gbranch(x86.AJPS, nil, -likely) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p1, gc.Pc) gc.Patch(p2, gc.Pc) case gc.ONE: // either NE or P gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to) gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to) default: gc.Patch(gc.Gbranch(optoas(op, nr.Type), nil, likely), to) } }
func cgen_floatsse(n *gc.Node, res *gc.Node) { var a obj.As nl := n.Left nr := n.Right switch n.Op { default: gc.Dump("cgen_floatsse", n) gc.Fatalf("cgen_floatsse %v", n.Op) return case gc.OMINUS, gc.OCOM: nr = gc.NegOne(n.Type) a = foptoas(gc.OMUL, nl.Type, 0) goto sbop // symmetric binary case gc.OADD, gc.OMUL: a = foptoas(n.Op, nl.Type, 0) goto sbop // asymmetric binary case gc.OSUB, gc.OMOD, gc.ODIV: a = foptoas(n.Op, nl.Type, 0) goto abop } sbop: // symmetric binary if nl.Ullman < nr.Ullman || nl.Op == gc.OLITERAL { nl, nr = nr, nl } abop: // asymmetric binary if nl.Ullman >= nr.Ullman { var nt gc.Node gc.Tempname(&nt, nl.Type) gc.Cgen(nl, &nt) var n2 gc.Node gc.Mgen(nr, &n2, nil) var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gmove(&nt, &n1) gins(a, &n2, &n1) gmove(&n1, res) gc.Regfree(&n1) gc.Mfree(&n2) } else { var n2 gc.Node gc.Regalloc(&n2, nr.Type, res) gc.Cgen(nr, &n2) var n1 gc.Node gc.Regalloc(&n1, nl.Type, nil) gc.Cgen(nl, &n1) gins(a, &n2, &n1) gc.Regfree(&n2) gmove(&n1, res) gc.Regfree(&n1) } return }
func floatmove_387(f *gc.Node, t *gc.Node) { var r1 gc.Node var a obj.As ft := gc.Simsimtype(f.Type) tt := gc.Simsimtype(t.Type) cvt := t.Type switch uint32(ft)<<16 | uint32(tt) { default: goto fatal /* * float to integer */ case gc.TFLOAT32<<16 | gc.TINT16, gc.TFLOAT32<<16 | gc.TINT32, gc.TFLOAT32<<16 | gc.TINT64, gc.TFLOAT64<<16 | gc.TINT16, gc.TFLOAT64<<16 | gc.TINT32, gc.TFLOAT64<<16 | gc.TINT64: if t.Op == gc.OREGISTER { goto hardmem } var r1 gc.Node gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0) if f.Op != gc.OREGISTER { if ft == gc.TFLOAT32 { gins(x86.AFMOVF, f, &r1) } else { gins(x86.AFMOVD, f, &r1) } } // set round to zero mode during conversion var t1 gc.Node memname(&t1, gc.Types[gc.TUINT16]) var t2 gc.Node memname(&t2, gc.Types[gc.TUINT16]) gins(x86.AFSTCW, nil, &t1) gins(x86.AMOVW, ncon(0xf7f), &t2) gins(x86.AFLDCW, &t2, nil) if tt == gc.TINT16 { gins(x86.AFMOVWP, &r1, t) } else if tt == gc.TINT32 { gins(x86.AFMOVLP, &r1, t) } else { gins(x86.AFMOVVP, &r1, t) } gins(x86.AFLDCW, &t1, nil) return // convert via int32. case gc.TFLOAT32<<16 | gc.TINT8, gc.TFLOAT32<<16 | gc.TUINT16, gc.TFLOAT32<<16 | gc.TUINT8, gc.TFLOAT64<<16 | gc.TINT8, gc.TFLOAT64<<16 | gc.TUINT16, gc.TFLOAT64<<16 | gc.TUINT8: var t1 gc.Node gc.Tempname(&t1, gc.Types[gc.TINT32]) gmove(f, &t1) switch tt { default: gc.Fatalf("gmove %v", t) case gc.TINT8: gins(x86.ACMPL, &t1, ncon(-0x80&(1<<32-1))) p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TINT32]), nil, -1) gins(x86.ACMPL, &t1, ncon(0x7f)) p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TINT32]), nil, -1) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) gc.Patch(p2, gc.Pc) gmove(ncon(-0x80&(1<<32-1)), &t1) gc.Patch(p3, gc.Pc) gmove(&t1, t) case gc.TUINT8: gins(x86.ATESTL, ncon(0xffffff00), &t1) p1 := gc.Gbranch(x86.AJEQ, nil, +1) gins(x86.AMOVL, ncon(0), &t1) gc.Patch(p1, gc.Pc) gmove(&t1, t) case gc.TUINT16: gins(x86.ATESTL, ncon(0xffff0000), &t1) p1 := gc.Gbranch(x86.AJEQ, nil, +1) gins(x86.AMOVL, ncon(0), &t1) gc.Patch(p1, gc.Pc) gmove(&t1, t) } return // convert via int64. case gc.TFLOAT32<<16 | gc.TUINT32, gc.TFLOAT64<<16 | gc.TUINT32: cvt = gc.Types[gc.TINT64] goto hardmem /* * integer to float */ case gc.TINT16<<16 | gc.TFLOAT32, gc.TINT16<<16 | gc.TFLOAT64, gc.TINT32<<16 | gc.TFLOAT32, gc.TINT32<<16 | gc.TFLOAT64, gc.TINT64<<16 | gc.TFLOAT32, gc.TINT64<<16 | gc.TFLOAT64: if t.Op != gc.OREGISTER { goto hard } if f.Op == gc.OREGISTER { cvt = f.Type goto hardmem } switch ft { case gc.TINT16: a = x86.AFMOVW case gc.TINT32: a = x86.AFMOVL default: a = x86.AFMOVV } // convert via int32 memory case gc.TINT8<<16 | gc.TFLOAT32, gc.TINT8<<16 | gc.TFLOAT64, gc.TUINT16<<16 | gc.TFLOAT32, gc.TUINT16<<16 | gc.TFLOAT64, gc.TUINT8<<16 | gc.TFLOAT32, gc.TUINT8<<16 | gc.TFLOAT64: cvt = gc.Types[gc.TINT32] goto hardmem // convert via int64 memory case gc.TUINT32<<16 | gc.TFLOAT32, gc.TUINT32<<16 | gc.TFLOAT64: cvt = gc.Types[gc.TINT64] goto hardmem // The way the code generator uses floating-point // registers, a move from F0 to F0 is intended as a no-op. // On the x86, it's not: it pushes a second copy of F0 // on the floating point stack. So toss it away here. // Also, F0 is the *only* register we ever evaluate // into, so we should only see register/register as F0/F0. /* * float to float */ case gc.TFLOAT32<<16 | gc.TFLOAT32, gc.TFLOAT64<<16 | gc.TFLOAT64: if gc.Ismem(f) && gc.Ismem(t) { goto hard } if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER { if f.Reg != x86.REG_F0 || t.Reg != x86.REG_F0 { goto fatal } return } a = x86.AFMOVF if ft == gc.TFLOAT64 { a = x86.AFMOVD } if gc.Ismem(t) { if f.Op != gc.OREGISTER || f.Reg != x86.REG_F0 { gc.Fatalf("gmove %v", f) } a = x86.AFMOVFP if ft == gc.TFLOAT64 { a = x86.AFMOVDP } } case gc.TFLOAT32<<16 | gc.TFLOAT64: if gc.Ismem(f) && gc.Ismem(t) { goto hard } if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER { if f.Reg != x86.REG_F0 || t.Reg != x86.REG_F0 { goto fatal } return } if f.Op == gc.OREGISTER { gins(x86.AFMOVDP, f, t) } else { gins(x86.AFMOVF, f, t) } return case gc.TFLOAT64<<16 | gc.TFLOAT32: if gc.Ismem(f) && gc.Ismem(t) { goto hard } if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER { var r1 gc.Node gc.Tempname(&r1, gc.Types[gc.TFLOAT32]) gins(x86.AFMOVFP, f, &r1) gins(x86.AFMOVF, &r1, t) return } if f.Op == gc.OREGISTER { gins(x86.AFMOVFP, f, t) } else { gins(x86.AFMOVD, f, t) } return } gins(a, f, t) return // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return // requires memory intermediate hardmem: gc.Tempname(&r1, cvt) gmove(f, &r1) gmove(&r1, t) return // should not happen fatal: gc.Fatalf("gmove %v -> %v", gc.Nconv(f, gc.FmtLong), gc.Nconv(t, gc.FmtLong)) return }
/* * attempt to generate 64-bit * res = n * return 1 on success, 0 if op not handled. */ func cgen64(n *gc.Node, res *gc.Node) { if res.Op != gc.OINDREG && res.Op != gc.ONAME { gc.Dump("n", n) gc.Dump("res", res) gc.Fatalf("cgen64 %v of %v", n.Op, res.Op) } switch n.Op { default: gc.Fatalf("cgen64 %v", n.Op) case gc.OMINUS: gc.Cgen(n.Left, res) var hi1 gc.Node var lo1 gc.Node split64(res, &lo1, &hi1) gins(x86.ANEGL, nil, &lo1) gins(x86.AADCL, ncon(0), &hi1) gins(x86.ANEGL, nil, &hi1) splitclean() return case gc.OCOM: gc.Cgen(n.Left, res) var lo1 gc.Node var hi1 gc.Node split64(res, &lo1, &hi1) gins(x86.ANOTL, nil, &lo1) gins(x86.ANOTL, nil, &hi1) splitclean() return // binary operators. // common setup below. case gc.OADD, gc.OSUB, gc.OMUL, gc.OLROT, gc.OLSH, gc.ORSH, gc.OAND, gc.OOR, gc.OXOR: break } l := n.Left r := n.Right if !l.Addable { var t1 gc.Node gc.Tempname(&t1, l.Type) gc.Cgen(l, &t1) l = &t1 } if r != nil && !r.Addable { var t2 gc.Node gc.Tempname(&t2, r.Type) gc.Cgen(r, &t2) r = &t2 } var ax gc.Node gc.Nodreg(&ax, gc.Types[gc.TINT32], x86.REG_AX) var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX) var dx gc.Node gc.Nodreg(&dx, gc.Types[gc.TINT32], x86.REG_DX) // Setup for binary operation. var hi1 gc.Node var lo1 gc.Node split64(l, &lo1, &hi1) var lo2 gc.Node var hi2 gc.Node if gc.Is64(r.Type) { split64(r, &lo2, &hi2) } // Do op. Leave result in DX:AX. switch n.Op { // TODO: Constants case gc.OADD: gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(x86.AADDL, &lo2, &ax) gins(x86.AADCL, &hi2, &dx) // TODO: Constants. case gc.OSUB: gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(x86.ASUBL, &lo2, &ax) gins(x86.ASBBL, &hi2, &dx) case gc.OMUL: // let's call the next three EX, FX and GX var ex, fx, gx gc.Node gc.Regalloc(&ex, gc.Types[gc.TPTR32], nil) gc.Regalloc(&fx, gc.Types[gc.TPTR32], nil) gc.Regalloc(&gx, gc.Types[gc.TPTR32], nil) // load args into DX:AX and EX:GX. gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(x86.AMOVL, &lo2, &gx) gins(x86.AMOVL, &hi2, &ex) // if DX and EX are zero, use 32 x 32 -> 64 unsigned multiply. gins(x86.AMOVL, &dx, &fx) gins(x86.AORL, &ex, &fx) p1 := gc.Gbranch(x86.AJNE, nil, 0) gins(x86.AMULL, &gx, nil) // implicit &ax p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // full 64x64 -> 64, from 32x32 -> 64. gins(x86.AIMULL, &gx, &dx) gins(x86.AMOVL, &ax, &fx) gins(x86.AIMULL, &ex, &fx) gins(x86.AADDL, &dx, &fx) gins(x86.AMOVL, &gx, &dx) gins(x86.AMULL, &dx, nil) // implicit &ax gins(x86.AADDL, &fx, &dx) gc.Patch(p2, gc.Pc) gc.Regfree(&ex) gc.Regfree(&fx) gc.Regfree(&gx) // We only rotate by a constant c in [0,64). // if c >= 32: // lo, hi = hi, lo // c -= 32 // if c == 0: // no-op // else: // t = hi // shld hi:lo, c // shld lo:t, c case gc.OLROT: v := uint64(r.Int64()) if v >= 32 { // reverse during load to do the first 32 bits of rotate v -= 32 gins(x86.AMOVL, &lo1, &dx) gins(x86.AMOVL, &hi1, &ax) } else { gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) } if v == 0 { } else // done { gins(x86.AMOVL, &dx, &cx) p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx) p1.From.Index = x86.REG_AX // double-width shift p1.From.Scale = 0 p1 = gins(x86.ASHLL, ncon(uint32(v)), &ax) p1.From.Index = x86.REG_CX // double-width shift p1.From.Scale = 0 } case gc.OLSH: if r.Op == gc.OLITERAL { v := uint64(r.Int64()) if v >= 64 { if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo2, &hi2) gins(x86.AMOVL, ncon(0), &lo2) gins(x86.AMOVL, ncon(0), &hi2) splitclean() return } if v >= 32 { if gc.Is64(r.Type) { splitclean() } split64(res, &lo2, &hi2) gmove(&lo1, &hi2) if v > 32 { gins(x86.ASHLL, ncon(uint32(v-32)), &hi2) } gins(x86.AMOVL, ncon(0), &lo2) splitclean() splitclean() return } // general shift gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx) p1.From.Index = x86.REG_AX // double-width shift p1.From.Scale = 0 gins(x86.ASHLL, ncon(uint32(v)), &ax) break } // load value into DX:AX. gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) // load shift value into register. // if high bits are set, zero value. var p1 *obj.Prog if gc.Is64(r.Type) { gins(x86.ACMPL, &hi2, ncon(0)) p1 = gc.Gbranch(x86.AJNE, nil, +1) gins(x86.AMOVL, &lo2, &cx) } else { cx.Type = gc.Types[gc.TUINT32] gmove(r, &cx) } // if shift count is >=64, zero value gins(x86.ACMPL, &cx, ncon(64)) p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) if p1 != nil { gc.Patch(p1, gc.Pc) } gins(x86.AXORL, &dx, &dx) gins(x86.AXORL, &ax, &ax) gc.Patch(p2, gc.Pc) // if shift count is >= 32, zero low. gins(x86.ACMPL, &cx, ncon(32)) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) gins(x86.AMOVL, &ax, &dx) gins(x86.ASHLL, &cx, &dx) // SHLL only uses bottom 5 bits of count gins(x86.AXORL, &ax, &ax) p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // general shift p1 = gins(x86.ASHLL, &cx, &dx) p1.From.Index = x86.REG_AX // double-width shift p1.From.Scale = 0 gins(x86.ASHLL, &cx, &ax) gc.Patch(p2, gc.Pc) case gc.ORSH: if r.Op == gc.OLITERAL { v := uint64(r.Int64()) if v >= 64 { if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo2, &hi2) if hi1.Type.Etype == gc.TINT32 { gmove(&hi1, &lo2) gins(x86.ASARL, ncon(31), &lo2) gmove(&hi1, &hi2) gins(x86.ASARL, ncon(31), &hi2) } else { gins(x86.AMOVL, ncon(0), &lo2) gins(x86.AMOVL, ncon(0), &hi2) } splitclean() return } if v >= 32 { if gc.Is64(r.Type) { splitclean() } split64(res, &lo2, &hi2) gmove(&hi1, &lo2) if v > 32 { gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v-32)), &lo2) } if hi1.Type.Etype == gc.TINT32 { gmove(&hi1, &hi2) gins(x86.ASARL, ncon(31), &hi2) } else { gins(x86.AMOVL, ncon(0), &hi2) } splitclean() splitclean() return } // general shift gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) p1 := gins(x86.ASHRL, ncon(uint32(v)), &ax) p1.From.Index = x86.REG_DX // double-width shift p1.From.Scale = 0 gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v)), &dx) break } // load value into DX:AX. gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) // load shift value into register. // if high bits are set, zero value. var p1 *obj.Prog if gc.Is64(r.Type) { gins(x86.ACMPL, &hi2, ncon(0)) p1 = gc.Gbranch(x86.AJNE, nil, +1) gins(x86.AMOVL, &lo2, &cx) } else { cx.Type = gc.Types[gc.TUINT32] gmove(r, &cx) } // if shift count is >=64, zero or sign-extend value gins(x86.ACMPL, &cx, ncon(64)) p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) if p1 != nil { gc.Patch(p1, gc.Pc) } if hi1.Type.Etype == gc.TINT32 { gins(x86.ASARL, ncon(31), &dx) gins(x86.AMOVL, &dx, &ax) } else { gins(x86.AXORL, &dx, &dx) gins(x86.AXORL, &ax, &ax) } gc.Patch(p2, gc.Pc) // if shift count is >= 32, sign-extend hi. gins(x86.ACMPL, &cx, ncon(32)) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) gins(x86.AMOVL, &dx, &ax) if hi1.Type.Etype == gc.TINT32 { gins(x86.ASARL, &cx, &ax) // SARL only uses bottom 5 bits of count gins(x86.ASARL, ncon(31), &dx) } else { gins(x86.ASHRL, &cx, &ax) gins(x86.AXORL, &dx, &dx) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // general shift p1 = gins(x86.ASHRL, &cx, &ax) p1.From.Index = x86.REG_DX // double-width shift p1.From.Scale = 0 gins(optoas(gc.ORSH, hi1.Type), &cx, &dx) gc.Patch(p2, gc.Pc) // make constant the right side (it usually is anyway). case gc.OXOR, gc.OAND, gc.OOR: if lo1.Op == gc.OLITERAL { nswap(&lo1, &lo2) nswap(&hi1, &hi2) } if lo2.Op == gc.OLITERAL { // special cases for constants. lv := uint32(lo2.Int64()) hv := uint32(hi2.Int64()) splitclean() // right side split64(res, &lo2, &hi2) switch n.Op { case gc.OXOR: gmove(&lo1, &lo2) gmove(&hi1, &hi2) switch lv { case 0: break case 0xffffffff: gins(x86.ANOTL, nil, &lo2) default: gins(x86.AXORL, ncon(lv), &lo2) } switch hv { case 0: break case 0xffffffff: gins(x86.ANOTL, nil, &hi2) default: gins(x86.AXORL, ncon(hv), &hi2) } case gc.OAND: switch lv { case 0: gins(x86.AMOVL, ncon(0), &lo2) default: gmove(&lo1, &lo2) if lv != 0xffffffff { gins(x86.AANDL, ncon(lv), &lo2) } } switch hv { case 0: gins(x86.AMOVL, ncon(0), &hi2) default: gmove(&hi1, &hi2) if hv != 0xffffffff { gins(x86.AANDL, ncon(hv), &hi2) } } case gc.OOR: switch lv { case 0: gmove(&lo1, &lo2) case 0xffffffff: gins(x86.AMOVL, ncon(0xffffffff), &lo2) default: gmove(&lo1, &lo2) gins(x86.AORL, ncon(lv), &lo2) } switch hv { case 0: gmove(&hi1, &hi2) case 0xffffffff: gins(x86.AMOVL, ncon(0xffffffff), &hi2) default: gmove(&hi1, &hi2) gins(x86.AORL, ncon(hv), &hi2) } } splitclean() splitclean() return } gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(optoas(n.Op, lo1.Type), &lo2, &ax) gins(optoas(n.Op, lo1.Type), &hi2, &dx) } if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo1, &hi1) gins(x86.AMOVL, &ax, &lo1) gins(x86.AMOVL, &dx, &hi1) splitclean() }
/* * generate division. * caller must set: * ax = allocated AX register * dx = allocated DX register * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will trap. // Also the byte divide instruction needs AH, // which we otherwise don't have to deal with. // Easiest way to avoid for int8, int16: use int32. // For int32 and int64, use explicit test. // Could use int64 hw for int32. t := nl.Type t0 := t check := false if t.IsSigned() { check = true if gc.Isconst(nl, gc.CTINT) && nl.Int64() != -1<<uint64(t.Width*8-1) { check = false } else if gc.Isconst(nr, gc.CTINT) && nr.Int64() != -1 { check = false } } if t.Width < 4 { if t.IsSigned() { t = gc.Types[gc.TINT32] } else { t = gc.Types[gc.TUINT32] } check = false } var t1 gc.Node gc.Tempname(&t1, t) var t2 gc.Node gc.Tempname(&t2, t) if t0 != t { var t3 gc.Node gc.Tempname(&t3, t0) var t4 gc.Node gc.Tempname(&t4, t0) gc.Cgen(nl, &t3) gc.Cgen(nr, &t4) // Convert. gmove(&t3, &t1) gmove(&t4, &t2) } else { gc.Cgen(nl, &t1) gc.Cgen(nr, &t2) } var n1 gc.Node if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) { gc.Regalloc(&n1, t, res) } else { gc.Regalloc(&n1, t, nil) } gmove(&t2, &n1) gmove(&t1, ax) var p2 *obj.Prog var n4 gc.Node if gc.Nacl { // Native Client does not relay the divide-by-zero trap // to the executing program, so we must insert a check // for ourselves. gc.Nodconst(&n4, t, 0) gins(optoas(gc.OCMP, t), &n1, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) } if check { gc.Nodconst(&n4, t, -1) gins(optoas(gc.OCMP, t), &n1, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, ax) gmove(ax, res) } else { // a % (-1) is 0. gc.Nodconst(&n4, t, 0) gmove(&n4, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } if !t.IsSigned() { var nz gc.Node gc.Nodconst(&nz, t, 0) gmove(&nz, dx) } else { gins(optoas(gc.OEXTEND, t), nil, nil) } gins(optoas(op, t), &n1, nil) gc.Regfree(&n1) if op == gc.ODIV { gmove(ax, res) } else { gmove(dx, res) } if check { gc.Patch(p2, gc.Pc) } }
func blockcopy(n, res *gc.Node, osrc, odst, w int64) { var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], x86.REG_DI) var src gc.Node gc.Nodreg(&src, gc.Types[gc.Tptr], x86.REG_SI) var tsrc gc.Node gc.Tempname(&tsrc, gc.Types[gc.Tptr]) var tdst gc.Node gc.Tempname(&tdst, gc.Types[gc.Tptr]) if !n.Addable { gc.Agen(n, &tsrc) } if !res.Addable { gc.Agen(res, &tdst) } if n.Addable { gc.Agen(n, &src) } else { gmove(&tsrc, &src) } if res.Op == gc.ONAME { gc.Gvardef(res) } if res.Addable { gc.Agen(res, &dst) } else { gmove(&tdst, &dst) } c := int32(w % 4) // bytes q := int32(w / 4) // doublewords // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && odst < osrc+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(x86.AADDL, w-1, x86.REG_SI) gconreg(x86.AADDL, w-1, x86.REG_DI) gconreg(x86.AMOVL, int64(c), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(x86.AADDL, -3, x86.REG_SI) gconreg(x86.AADDL, -3, x86.REG_DI) } else { gconreg(x86.AADDL, w-4, x86.REG_SI) gconreg(x86.AADDL, w-4, x86.REG_DI) } gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { gins(x86.ACLD, nil, nil) // paranoia. TODO(rsc): remove? // normal direction if q > 128 || (q >= 4 && gc.Nacl) { gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 10 and 128 = magic constants: see ../../runtime/asm_386.s p.To.Offset = 10 * (128 - int64(q)) } else if !gc.Nacl && c == 0 { var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX) // We don't need the MOVSL side-effect of updating SI and DI, // and issuing a sequence of MOVLs directly is faster. src.Op = gc.OINDREG dst.Op = gc.OINDREG for q > 0 { gmove(&src, &cx) // MOVL x+(SI),CX gmove(&cx, &dst) // MOVL CX,x+(DI) src.Xoffset += 4 dst.Xoffset += 4 q-- } } else { for q > 0 { gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ q-- } } for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } }
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog { gc.Tempname(res, n.Type) return cgenindex(n, res, bounded) }
func memname(n *gc.Node, t *gc.Type) { gc.Tempname(n, t) n.Sym = gc.Lookup("." + n.Sym.Name[1:]) // keep optimizer from registerizing n.Orig.Sym = n.Sym }
func floatmove_sse(f *gc.Node, t *gc.Node) { var r1 gc.Node var cvt *gc.Type var a obj.As ft := gc.Simsimtype(f.Type) tt := gc.Simsimtype(t.Type) switch uint32(ft)<<16 | uint32(tt) { // should not happen default: gc.Fatalf("gmove %v -> %v", f, t) return // convert via int32. /* * float to integer */ case gc.TFLOAT32<<16 | gc.TINT16, gc.TFLOAT32<<16 | gc.TINT8, gc.TFLOAT32<<16 | gc.TUINT16, gc.TFLOAT32<<16 | gc.TUINT8, gc.TFLOAT64<<16 | gc.TINT16, gc.TFLOAT64<<16 | gc.TINT8, gc.TFLOAT64<<16 | gc.TUINT16, gc.TFLOAT64<<16 | gc.TUINT8: cvt = gc.Types[gc.TINT32] goto hard // convert via int64. case gc.TFLOAT32<<16 | gc.TUINT32, gc.TFLOAT64<<16 | gc.TUINT32: cvt = gc.Types[gc.TINT64] goto hardmem case gc.TFLOAT32<<16 | gc.TINT32: a = x86.ACVTTSS2SL goto rdst case gc.TFLOAT64<<16 | gc.TINT32: a = x86.ACVTTSD2SL goto rdst // convert via int32 memory /* * integer to float */ case gc.TINT8<<16 | gc.TFLOAT32, gc.TINT8<<16 | gc.TFLOAT64, gc.TINT16<<16 | gc.TFLOAT32, gc.TINT16<<16 | gc.TFLOAT64, gc.TUINT16<<16 | gc.TFLOAT32, gc.TUINT16<<16 | gc.TFLOAT64, gc.TUINT8<<16 | gc.TFLOAT32, gc.TUINT8<<16 | gc.TFLOAT64: cvt = gc.Types[gc.TINT32] goto hard // convert via int64 memory case gc.TUINT32<<16 | gc.TFLOAT32, gc.TUINT32<<16 | gc.TFLOAT64: cvt = gc.Types[gc.TINT64] goto hardmem case gc.TINT32<<16 | gc.TFLOAT32: a = x86.ACVTSL2SS goto rdst case gc.TINT32<<16 | gc.TFLOAT64: a = x86.ACVTSL2SD goto rdst /* * float to float */ case gc.TFLOAT32<<16 | gc.TFLOAT32: a = x86.AMOVSS case gc.TFLOAT64<<16 | gc.TFLOAT64: a = x86.AMOVSD case gc.TFLOAT32<<16 | gc.TFLOAT64: a = x86.ACVTSS2SD goto rdst case gc.TFLOAT64<<16 | gc.TFLOAT32: a = x86.ACVTSD2SS goto rdst } gins(a, f, t) return // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return // requires memory intermediate hardmem: gc.Tempname(&r1, cvt) gmove(f, &r1) gmove(&r1, t) return // requires register destination rdst: gc.Regalloc(&r1, t.Type, t) gins(a, f, &r1) gmove(&r1, t) gc.Regfree(&r1) return }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Type.Width > 4 { gc.Fatalf("cgen_shift %v", nl.Type) } w := int(nl.Type.Width * 8) if op == gc.OLROT { v := nr.Int64() var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) if w == 32 { gc.Cgen(nl, &n1) gshift(arm.AMOVW, &n1, arm.SHIFT_RR, int32(w)-int32(v), &n1) } else { var n2 gc.Node gc.Regalloc(&n2, nl.Type, nil) gc.Cgen(nl, &n2) gshift(arm.AMOVW, &n2, arm.SHIFT_LL, int32(v), &n1) gshift(arm.AORR, &n2, arm.SHIFT_LR, int32(w)-int32(v), &n1) gc.Regfree(&n2) // Ensure sign/zero-extended result. gins(optoas(gc.OAS, nl.Type), &n1, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(nr.Int64()) if sc == 0 { } else // nothing to do if sc >= uint64(nl.Type.Width*8) { if op == gc.ORSH && nl.Type.IsSigned() { gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1) } else { gins(arm.AEOR, &n1, &n1) } } else { if op == gc.ORSH && nl.Type.IsSigned() { gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(sc), &n1) } else if op == gc.ORSH { gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(sc), &n1) // OLSH } else { gshift(arm.AMOVW, &n1, arm.SHIFT_LL, int32(sc), &n1) } } if w < 32 && op == gc.OLSH { gins(optoas(gc.OAS, nl.Type), &n1, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } tr := nr.Type var t gc.Node var n1 gc.Node var n2 gc.Node var n3 gc.Node if tr.Width > 4 { var nt gc.Node gc.Tempname(&nt, nr.Type) if nl.Ullman >= nr.Ullman { gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) gc.Cgen(nr, &nt) n1 = nt } else { gc.Cgen(nr, &nt) gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) } var hi gc.Node var lo gc.Node split64(&nt, &lo, &hi) gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil) gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil) gmove(&lo, &n1) gmove(&hi, &n3) splitclean() gins(arm.ATST, &n3, nil) gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w)) p1 := gins(arm.AMOVW, &t, &n1) p1.Scond = arm.C_SCOND_NE tr = gc.Types[gc.TUINT32] gc.Regfree(&n3) } else { if nl.Ullman >= nr.Ullman { gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) gc.Regalloc(&n1, nr.Type, nil) gc.Cgen(nr, &n1) } else { gc.Regalloc(&n1, nr.Type, nil) gc.Cgen(nr, &n1) gc.Regalloc(&n2, nl.Type, res) gc.Cgen(nl, &n2) } } // test for shift being 0 gins(arm.ATST, &n1, nil) p3 := gc.Gbranch(arm.ABEQ, nil, -1) // test and fix up large shifts // TODO: if(!bounded), don't emit some of this. gc.Regalloc(&n3, tr, nil) gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w)) gmove(&t, &n3) gins(arm.ACMP, &n1, &n3) if op == gc.ORSH { var p1 *obj.Prog var p2 *obj.Prog if nl.Type.IsSigned() { p1 = gshift(arm.AMOVW, &n2, arm.SHIFT_AR, int32(w)-1, &n2) p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_AR, &n1, &n2) } else { p1 = gins(arm.AEOR, &n2, &n2) p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_LR, &n1, &n2) } p1.Scond = arm.C_SCOND_HS p2.Scond = arm.C_SCOND_LO } else { p1 := gins(arm.AEOR, &n2, &n2) p2 := gregshift(arm.AMOVW, &n2, arm.SHIFT_LL, &n1, &n2) p1.Scond = arm.C_SCOND_HS p2.Scond = arm.C_SCOND_LO } gc.Regfree(&n3) gc.Patch(p3, gc.Pc) // Left-shift of smaller word must be sign/zero-extended. if w < 32 && op == gc.OLSH { gins(optoas(gc.OAS, nl.Type), &n2, &n2) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * attempt to generate 64-bit * res = n * return 1 on success, 0 if op not handled. */ func cgen64(n *gc.Node, res *gc.Node) { if res.Op != gc.OINDREG && res.Op != gc.ONAME { gc.Dump("n", n) gc.Dump("res", res) gc.Fatalf("cgen64 %v of %v", n.Op, res.Op) } l := n.Left var t1 gc.Node if !l.Addable { gc.Tempname(&t1, l.Type) gc.Cgen(l, &t1) l = &t1 } var hi1 gc.Node var lo1 gc.Node split64(l, &lo1, &hi1) switch n.Op { default: gc.Fatalf("cgen64 %v", n.Op) case gc.OMINUS: var lo2 gc.Node var hi2 gc.Node split64(res, &lo2, &hi2) gc.Regalloc(&t1, lo1.Type, nil) var al gc.Node gc.Regalloc(&al, lo1.Type, nil) var ah gc.Node gc.Regalloc(&ah, hi1.Type, nil) gins(arm.AMOVW, &lo1, &al) gins(arm.AMOVW, &hi1, &ah) gmove(ncon(0), &t1) p1 := gins(arm.ASUB, &al, &t1) p1.Scond |= arm.C_SBIT gins(arm.AMOVW, &t1, &lo2) gmove(ncon(0), &t1) gins(arm.ASBC, &ah, &t1) gins(arm.AMOVW, &t1, &hi2) gc.Regfree(&t1) gc.Regfree(&al) gc.Regfree(&ah) splitclean() splitclean() return case gc.OCOM: gc.Regalloc(&t1, lo1.Type, nil) gmove(ncon(^uint32(0)), &t1) var lo2 gc.Node var hi2 gc.Node split64(res, &lo2, &hi2) var n1 gc.Node gc.Regalloc(&n1, lo1.Type, nil) gins(arm.AMOVW, &lo1, &n1) gins(arm.AEOR, &t1, &n1) gins(arm.AMOVW, &n1, &lo2) gins(arm.AMOVW, &hi1, &n1) gins(arm.AEOR, &t1, &n1) gins(arm.AMOVW, &n1, &hi2) gc.Regfree(&t1) gc.Regfree(&n1) splitclean() splitclean() return // binary operators. // common setup below. case gc.OADD, gc.OSUB, gc.OMUL, gc.OLSH, gc.ORSH, gc.OAND, gc.OOR, gc.OXOR, gc.OLROT: break } // setup for binary operators r := n.Right if r != nil && !r.Addable { var t2 gc.Node gc.Tempname(&t2, r.Type) gc.Cgen(r, &t2) r = &t2 } var hi2 gc.Node var lo2 gc.Node if gc.Is64(r.Type) { split64(r, &lo2, &hi2) } var al gc.Node gc.Regalloc(&al, lo1.Type, nil) var ah gc.Node gc.Regalloc(&ah, hi1.Type, nil) // Do op. Leave result in ah:al. switch n.Op { default: gc.Fatalf("cgen64: not implemented: %v\n", n) // TODO: Constants case gc.OADD: var bl gc.Node gc.Regalloc(&bl, gc.Types[gc.TPTR32], nil) var bh gc.Node gc.Regalloc(&bh, gc.Types[gc.TPTR32], nil) gins(arm.AMOVW, &hi1, &ah) gins(arm.AMOVW, &lo1, &al) gins(arm.AMOVW, &hi2, &bh) gins(arm.AMOVW, &lo2, &bl) p1 := gins(arm.AADD, &bl, &al) p1.Scond |= arm.C_SBIT gins(arm.AADC, &bh, &ah) gc.Regfree(&bl) gc.Regfree(&bh) // TODO: Constants. case gc.OSUB: var bl gc.Node gc.Regalloc(&bl, gc.Types[gc.TPTR32], nil) var bh gc.Node gc.Regalloc(&bh, gc.Types[gc.TPTR32], nil) gins(arm.AMOVW, &lo1, &al) gins(arm.AMOVW, &hi1, &ah) gins(arm.AMOVW, &lo2, &bl) gins(arm.AMOVW, &hi2, &bh) p1 := gins(arm.ASUB, &bl, &al) p1.Scond |= arm.C_SBIT gins(arm.ASBC, &bh, &ah) gc.Regfree(&bl) gc.Regfree(&bh) // TODO(kaib): this can be done with 4 regs and does not need 6 case gc.OMUL: var bl gc.Node gc.Regalloc(&bl, gc.Types[gc.TPTR32], nil) var bh gc.Node gc.Regalloc(&bh, gc.Types[gc.TPTR32], nil) var cl gc.Node gc.Regalloc(&cl, gc.Types[gc.TPTR32], nil) var ch gc.Node gc.Regalloc(&ch, gc.Types[gc.TPTR32], nil) // load args into bh:bl and bh:bl. gins(arm.AMOVW, &hi1, &bh) gins(arm.AMOVW, &lo1, &bl) gins(arm.AMOVW, &hi2, &ch) gins(arm.AMOVW, &lo2, &cl) // bl * cl -> ah al p1 := gins(arm.AMULLU, nil, nil) p1.From.Type = obj.TYPE_REG p1.From.Reg = bl.Reg p1.Reg = cl.Reg p1.To.Type = obj.TYPE_REGREG p1.To.Reg = ah.Reg p1.To.Offset = int64(al.Reg) //print("%v\n", p1); // bl * ch + ah -> ah p1 = gins(arm.AMULA, nil, nil) p1.From.Type = obj.TYPE_REG p1.From.Reg = bl.Reg p1.Reg = ch.Reg p1.To.Type = obj.TYPE_REGREG2 p1.To.Reg = ah.Reg p1.To.Offset = int64(ah.Reg) //print("%v\n", p1); // bh * cl + ah -> ah p1 = gins(arm.AMULA, nil, nil) p1.From.Type = obj.TYPE_REG p1.From.Reg = bh.Reg p1.Reg = cl.Reg p1.To.Type = obj.TYPE_REGREG2 p1.To.Reg = ah.Reg p1.To.Offset = int64(ah.Reg) //print("%v\n", p1); gc.Regfree(&bh) gc.Regfree(&bl) gc.Regfree(&ch) gc.Regfree(&cl) // We only rotate by a constant c in [0,64). // if c >= 32: // lo, hi = hi, lo // c -= 32 // if c == 0: // no-op // else: // t = hi // shld hi:lo, c // shld lo:t, c case gc.OLROT: v := uint64(r.Int64()) var bl gc.Node gc.Regalloc(&bl, lo1.Type, nil) var bh gc.Node gc.Regalloc(&bh, hi1.Type, nil) if v >= 32 { // reverse during load to do the first 32 bits of rotate v -= 32 gins(arm.AMOVW, &hi1, &bl) gins(arm.AMOVW, &lo1, &bh) } else { gins(arm.AMOVW, &hi1, &bh) gins(arm.AMOVW, &lo1, &bl) } if v == 0 { gins(arm.AMOVW, &bh, &ah) gins(arm.AMOVW, &bl, &al) } else { // rotate by 1 <= v <= 31 // MOVW bl<<v, al // MOVW bh<<v, ah // OR bl>>(32-v), ah // OR bh>>(32-v), al gshift(arm.AMOVW, &bl, arm.SHIFT_LL, int32(v), &al) gshift(arm.AMOVW, &bh, arm.SHIFT_LL, int32(v), &ah) gshift(arm.AORR, &bl, arm.SHIFT_LR, int32(32-v), &ah) gshift(arm.AORR, &bh, arm.SHIFT_LR, int32(32-v), &al) } gc.Regfree(&bl) gc.Regfree(&bh) case gc.OLSH: var bl gc.Node gc.Regalloc(&bl, lo1.Type, nil) var bh gc.Node gc.Regalloc(&bh, hi1.Type, nil) gins(arm.AMOVW, &hi1, &bh) gins(arm.AMOVW, &lo1, &bl) var p6 *obj.Prog var s gc.Node var n1 gc.Node var creg gc.Node var p1 *obj.Prog var p2 *obj.Prog var p3 *obj.Prog var p4 *obj.Prog var p5 *obj.Prog if r.Op == gc.OLITERAL { v := uint64(r.Int64()) if v >= 64 { // TODO(kaib): replace with gins(AMOVW, nodintconst(0), &al) // here and below (verify it optimizes to EOR) gins(arm.AEOR, &al, &al) gins(arm.AEOR, &ah, &ah) } else if v > 32 { gins(arm.AEOR, &al, &al) // MOVW bl<<(v-32), ah gshift(arm.AMOVW, &bl, arm.SHIFT_LL, int32(v-32), &ah) } else if v == 32 { gins(arm.AEOR, &al, &al) gins(arm.AMOVW, &bl, &ah) } else if v > 0 { // MOVW bl<<v, al gshift(arm.AMOVW, &bl, arm.SHIFT_LL, int32(v), &al) // MOVW bh<<v, ah gshift(arm.AMOVW, &bh, arm.SHIFT_LL, int32(v), &ah) // OR bl>>(32-v), ah gshift(arm.AORR, &bl, arm.SHIFT_LR, int32(32-v), &ah) } else { gins(arm.AMOVW, &bl, &al) gins(arm.AMOVW, &bh, &ah) } goto olsh_break } gc.Regalloc(&s, gc.Types[gc.TUINT32], nil) gc.Regalloc(&creg, gc.Types[gc.TUINT32], nil) if gc.Is64(r.Type) { // shift is >= 1<<32 var cl gc.Node var ch gc.Node split64(r, &cl, &ch) gmove(&ch, &s) gins(arm.ATST, &s, nil) p6 = gc.Gbranch(arm.ABNE, nil, 0) gmove(&cl, &s) splitclean() } else { gmove(r, &s) p6 = nil } gins(arm.ATST, &s, nil) // shift == 0 p1 = gins(arm.AMOVW, &bl, &al) p1.Scond = arm.C_SCOND_EQ p1 = gins(arm.AMOVW, &bh, &ah) p1.Scond = arm.C_SCOND_EQ p2 = gc.Gbranch(arm.ABEQ, nil, 0) // shift is < 32 gc.Nodconst(&n1, gc.Types[gc.TUINT32], 32) gmove(&n1, &creg) gins(arm.ACMP, &s, &creg) // MOVW.LO bl<<s, al p1 = gregshift(arm.AMOVW, &bl, arm.SHIFT_LL, &s, &al) p1.Scond = arm.C_SCOND_LO // MOVW.LO bh<<s, ah p1 = gregshift(arm.AMOVW, &bh, arm.SHIFT_LL, &s, &ah) p1.Scond = arm.C_SCOND_LO // SUB.LO s, creg p1 = gins(arm.ASUB, &s, &creg) p1.Scond = arm.C_SCOND_LO // OR.LO bl>>creg, ah p1 = gregshift(arm.AORR, &bl, arm.SHIFT_LR, &creg, &ah) p1.Scond = arm.C_SCOND_LO // BLO end p3 = gc.Gbranch(arm.ABLO, nil, 0) // shift == 32 p1 = gins(arm.AEOR, &al, &al) p1.Scond = arm.C_SCOND_EQ p1 = gins(arm.AMOVW, &bl, &ah) p1.Scond = arm.C_SCOND_EQ p4 = gc.Gbranch(arm.ABEQ, nil, 0) // shift is < 64 gc.Nodconst(&n1, gc.Types[gc.TUINT32], 64) gmove(&n1, &creg) gins(arm.ACMP, &s, &creg) // EOR.LO al, al p1 = gins(arm.AEOR, &al, &al) p1.Scond = arm.C_SCOND_LO // MOVW.LO creg>>1, creg p1 = gshift(arm.AMOVW, &creg, arm.SHIFT_LR, 1, &creg) p1.Scond = arm.C_SCOND_LO // SUB.LO creg, s p1 = gins(arm.ASUB, &creg, &s) p1.Scond = arm.C_SCOND_LO // MOVW bl<<s, ah p1 = gregshift(arm.AMOVW, &bl, arm.SHIFT_LL, &s, &ah) p1.Scond = arm.C_SCOND_LO p5 = gc.Gbranch(arm.ABLO, nil, 0) // shift >= 64 if p6 != nil { gc.Patch(p6, gc.Pc) } gins(arm.AEOR, &al, &al) gins(arm.AEOR, &ah, &ah) gc.Patch(p2, gc.Pc) gc.Patch(p3, gc.Pc) gc.Patch(p4, gc.Pc) gc.Patch(p5, gc.Pc) gc.Regfree(&s) gc.Regfree(&creg) olsh_break: gc.Regfree(&bl) gc.Regfree(&bh) case gc.ORSH: var bl gc.Node gc.Regalloc(&bl, lo1.Type, nil) var bh gc.Node gc.Regalloc(&bh, hi1.Type, nil) gins(arm.AMOVW, &hi1, &bh) gins(arm.AMOVW, &lo1, &bl) var p4 *obj.Prog var p5 *obj.Prog var n1 gc.Node var p6 *obj.Prog var s gc.Node var p1 *obj.Prog var p2 *obj.Prog var creg gc.Node var p3 *obj.Prog if r.Op == gc.OLITERAL { v := uint64(r.Int64()) if v >= 64 { if bh.Type.Etype == gc.TINT32 { // MOVW bh->31, al gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &al) // MOVW bh->31, ah gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &ah) } else { gins(arm.AEOR, &al, &al) gins(arm.AEOR, &ah, &ah) } } else if v > 32 { if bh.Type.Etype == gc.TINT32 { // MOVW bh->(v-32), al gshift(arm.AMOVW, &bh, arm.SHIFT_AR, int32(v-32), &al) // MOVW bh->31, ah gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &ah) } else { // MOVW bh>>(v-32), al gshift(arm.AMOVW, &bh, arm.SHIFT_LR, int32(v-32), &al) gins(arm.AEOR, &ah, &ah) } } else if v == 32 { gins(arm.AMOVW, &bh, &al) if bh.Type.Etype == gc.TINT32 { // MOVW bh->31, ah gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &ah) } else { gins(arm.AEOR, &ah, &ah) } } else if v > 0 { // MOVW bl>>v, al gshift(arm.AMOVW, &bl, arm.SHIFT_LR, int32(v), &al) // OR bh<<(32-v), al gshift(arm.AORR, &bh, arm.SHIFT_LL, int32(32-v), &al) if bh.Type.Etype == gc.TINT32 { // MOVW bh->v, ah gshift(arm.AMOVW, &bh, arm.SHIFT_AR, int32(v), &ah) } else { // MOVW bh>>v, ah gshift(arm.AMOVW, &bh, arm.SHIFT_LR, int32(v), &ah) } } else { gins(arm.AMOVW, &bl, &al) gins(arm.AMOVW, &bh, &ah) } goto orsh_break } gc.Regalloc(&s, gc.Types[gc.TUINT32], nil) gc.Regalloc(&creg, gc.Types[gc.TUINT32], nil) if gc.Is64(r.Type) { // shift is >= 1<<32 var ch gc.Node var cl gc.Node split64(r, &cl, &ch) gmove(&ch, &s) gins(arm.ATST, &s, nil) var p1 *obj.Prog if bh.Type.Etype == gc.TINT32 { p1 = gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &ah) } else { p1 = gins(arm.AEOR, &ah, &ah) } p1.Scond = arm.C_SCOND_NE p6 = gc.Gbranch(arm.ABNE, nil, 0) gmove(&cl, &s) splitclean() } else { gmove(r, &s) p6 = nil } gins(arm.ATST, &s, nil) // shift == 0 p1 = gins(arm.AMOVW, &bl, &al) p1.Scond = arm.C_SCOND_EQ p1 = gins(arm.AMOVW, &bh, &ah) p1.Scond = arm.C_SCOND_EQ p2 = gc.Gbranch(arm.ABEQ, nil, 0) // check if shift is < 32 gc.Nodconst(&n1, gc.Types[gc.TUINT32], 32) gmove(&n1, &creg) gins(arm.ACMP, &s, &creg) // MOVW.LO bl>>s, al p1 = gregshift(arm.AMOVW, &bl, arm.SHIFT_LR, &s, &al) p1.Scond = arm.C_SCOND_LO // SUB.LO s,creg p1 = gins(arm.ASUB, &s, &creg) p1.Scond = arm.C_SCOND_LO // OR.LO bh<<(32-s), al p1 = gregshift(arm.AORR, &bh, arm.SHIFT_LL, &creg, &al) p1.Scond = arm.C_SCOND_LO if bh.Type.Etype == gc.TINT32 { // MOVW bh->s, ah p1 = gregshift(arm.AMOVW, &bh, arm.SHIFT_AR, &s, &ah) } else { // MOVW bh>>s, ah p1 = gregshift(arm.AMOVW, &bh, arm.SHIFT_LR, &s, &ah) } p1.Scond = arm.C_SCOND_LO // BLO end p3 = gc.Gbranch(arm.ABLO, nil, 0) // shift == 32 p1 = gins(arm.AMOVW, &bh, &al) p1.Scond = arm.C_SCOND_EQ if bh.Type.Etype == gc.TINT32 { gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &ah) } else { gins(arm.AEOR, &ah, &ah) } p4 = gc.Gbranch(arm.ABEQ, nil, 0) // check if shift is < 64 gc.Nodconst(&n1, gc.Types[gc.TUINT32], 64) gmove(&n1, &creg) gins(arm.ACMP, &s, &creg) // MOVW.LO creg>>1, creg p1 = gshift(arm.AMOVW, &creg, arm.SHIFT_LR, 1, &creg) p1.Scond = arm.C_SCOND_LO // SUB.LO creg, s p1 = gins(arm.ASUB, &creg, &s) p1.Scond = arm.C_SCOND_LO if bh.Type.Etype == gc.TINT32 { // MOVW bh->(s-32), al p1 := gregshift(arm.AMOVW, &bh, arm.SHIFT_AR, &s, &al) p1.Scond = arm.C_SCOND_LO } else { // MOVW bh>>(v-32), al p1 := gregshift(arm.AMOVW, &bh, arm.SHIFT_LR, &s, &al) p1.Scond = arm.C_SCOND_LO } // BLO end p5 = gc.Gbranch(arm.ABLO, nil, 0) // s >= 64 if p6 != nil { gc.Patch(p6, gc.Pc) } if bh.Type.Etype == gc.TINT32 { // MOVW bh->31, al gshift(arm.AMOVW, &bh, arm.SHIFT_AR, 31, &al) } else { gins(arm.AEOR, &al, &al) } gc.Patch(p2, gc.Pc) gc.Patch(p3, gc.Pc) gc.Patch(p4, gc.Pc) gc.Patch(p5, gc.Pc) gc.Regfree(&s) gc.Regfree(&creg) orsh_break: gc.Regfree(&bl) gc.Regfree(&bh) // TODO(kaib): literal optimizations // make constant the right side (it usually is anyway). // if(lo1.op == OLITERAL) { // nswap(&lo1, &lo2); // nswap(&hi1, &hi2); // } // if(lo2.op == OLITERAL) { // // special cases for constants. // lv = mpgetfix(lo2.val.u.xval); // hv = mpgetfix(hi2.val.u.xval); // splitclean(); // right side // split64(res, &lo2, &hi2); // switch(n->op) { // case OXOR: // gmove(&lo1, &lo2); // gmove(&hi1, &hi2); // switch(lv) { // case 0: // break; // case 0xffffffffu: // gins(ANOTL, N, &lo2); // break; // default: // gins(AXORL, ncon(lv), &lo2); // break; // } // switch(hv) { // case 0: // break; // case 0xffffffffu: // gins(ANOTL, N, &hi2); // break; // default: // gins(AXORL, ncon(hv), &hi2); // break; // } // break; // case OAND: // switch(lv) { // case 0: // gins(AMOVL, ncon(0), &lo2); // break; // default: // gmove(&lo1, &lo2); // if(lv != 0xffffffffu) // gins(AANDL, ncon(lv), &lo2); // break; // } // switch(hv) { // case 0: // gins(AMOVL, ncon(0), &hi2); // break; // default: // gmove(&hi1, &hi2); // if(hv != 0xffffffffu) // gins(AANDL, ncon(hv), &hi2); // break; // } // break; // case OOR: // switch(lv) { // case 0: // gmove(&lo1, &lo2); // break; // case 0xffffffffu: // gins(AMOVL, ncon(0xffffffffu), &lo2); // break; // default: // gmove(&lo1, &lo2); // gins(AORL, ncon(lv), &lo2); // break; // } // switch(hv) { // case 0: // gmove(&hi1, &hi2); // break; // case 0xffffffffu: // gins(AMOVL, ncon(0xffffffffu), &hi2); // break; // default: // gmove(&hi1, &hi2); // gins(AORL, ncon(hv), &hi2); // break; // } // break; // } // splitclean(); // splitclean(); // goto out; // } case gc.OXOR, gc.OAND, gc.OOR: var n1 gc.Node gc.Regalloc(&n1, lo1.Type, nil) gins(arm.AMOVW, &lo1, &al) gins(arm.AMOVW, &hi1, &ah) gins(arm.AMOVW, &lo2, &n1) gins(optoas(n.Op, lo1.Type), &n1, &al) gins(arm.AMOVW, &hi2, &n1) gins(optoas(n.Op, lo1.Type), &n1, &ah) gc.Regfree(&n1) } if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo1, &hi1) gins(arm.AMOVW, &al, &lo1) gins(arm.AMOVW, &ah, &hi1) splitclean() //out: gc.Regfree(&al) gc.Regfree(&ah) }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Type.Width > 4 { gc.Fatalf("cgen_shift %v", nl.Type) } w := int(nl.Type.Width * 8) a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n2 gc.Node gc.Tempname(&n2, nl.Type) gc.Cgen(nl, &n2) var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gmove(&n2, &n1) sc := uint64(nr.Int64()) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 gins(a, ncon(uint32(w)-1), &n1) gins(a, ncon(uint32(w)-1), &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } var oldcx gc.Node var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX) if gc.GetReg(x86.REG_CX) > 1 && !gc.Samereg(&cx, res) { gc.Tempname(&oldcx, gc.Types[gc.TUINT32]) gmove(&cx, &oldcx) } var n1 gc.Node var nt gc.Node if nr.Type.Width > 4 { gc.Tempname(&nt, nr.Type) n1 = nt } else { gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX } var n2 gc.Node if gc.Samereg(&cx, res) { gc.Regalloc(&n2, nl.Type, nil) } else { gc.Regalloc(&n2, nl.Type, res) } if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) } else { gc.Cgen(nr, &n1) gc.Cgen(nl, &n2) } // test and fix up large shifts if bounded { if nr.Type.Width > 4 { // delayed reg alloc gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX var lo gc.Node var hi gc.Node split64(&nt, &lo, &hi) gmove(&lo, &n1) splitclean() } } else { var p1 *obj.Prog if nr.Type.Width > 4 { // delayed reg alloc gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX var lo gc.Node var hi gc.Node split64(&nt, &lo, &hi) gmove(&lo, &n1) gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &hi, ncon(0)) p2 := gc.Gbranch(optoas(gc.ONE, gc.Types[gc.TUINT32]), nil, +1) gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n1, ncon(uint32(w))) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) splitclean() gc.Patch(p2, gc.Pc) } else { gins(optoas(gc.OCMP, nr.Type), &n1, ncon(uint32(w))) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) } if op == gc.ORSH && nl.Type.IsSigned() { gins(a, ncon(uint32(w)-1), &n2) } else { gmove(ncon(0), &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) if oldcx.Op != 0 { gmove(&oldcx, &cx) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(nr.Int64()) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 var n3 gc.Node gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n1) gins(a, &n3, &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nl.Ullman >= gc.UINF { var n4 gc.Node gc.Tempname(&n4, nl.Type) gc.Cgen(nl, &n4) nl = &n4 } if nr.Ullman >= gc.UINF { var n5 gc.Node gc.Tempname(&n5, nr.Type) gc.Cgen(nr, &n5) nr = &n5 } // Allow either uint32 or uint64 as shift type, // to avoid unnecessary conversion from uint32 to uint64 // just to do the comparison. tcount := gc.Types[gc.Simtype[nr.Type.Etype]] if tcount.Etype < gc.TUINT32 { tcount = gc.Types[gc.TUINT32] } var n1 gc.Node gc.Regalloc(&n1, nr.Type, nil) // to hold the shift type in CX var n3 gc.Node gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX var n2 gc.Node gc.Regalloc(&n2, nl.Type, res) if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) gmove(&n1, &n3) } else { gc.Cgen(nr, &n1) gmove(&n1, &n3) gc.Cgen(nl, &n2) } gc.Regfree(&n3) // test and fix up large shifts if !bounded { gc.Nodconst(&n3, tcount, nl.Type.Width*8) gins(optoas(gc.OCMP, tcount), &n1, &n3) p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, 1) if op == gc.ORSH && nl.Type.IsSigned() { gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n2) } else { gc.Nodconst(&n3, nl.Type, 0) gmove(&n3, &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
func floatmove(f *gc.Node, t *gc.Node) { var r1 gc.Node ft := gc.Simsimtype(f.Type) tt := gc.Simsimtype(t.Type) cvt := t.Type // cannot have two floating point memory operands. if gc.Isfloat[ft] && gc.Isfloat[tt] && gc.Ismem(f) && gc.Ismem(t) { goto hard } // convert constant to desired type if f.Op == gc.OLITERAL { var con gc.Node f.Convconst(&con, t.Type) f = &con ft = gc.Simsimtype(con.Type) // some constants can't move directly to memory. if gc.Ismem(t) { // float constants come from memory. if gc.Isfloat[tt] { goto hard } } } // value -> value copy, only one memory operand. // figure out the instruction to use. // break out of switch for one-instruction gins. // goto rdst for "destination must be register". // goto hard for "convert to cvt type first". // otherwise handle and return. switch uint32(ft)<<16 | uint32(tt) { default: if gc.Thearch.Use387 { floatmove_387(f, t) } else { floatmove_sse(f, t) } return // float to very long integer. case gc.TFLOAT32<<16 | gc.TINT64, gc.TFLOAT64<<16 | gc.TINT64: if f.Op == gc.OREGISTER { cvt = f.Type goto hardmem } var r1 gc.Node gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0) if ft == gc.TFLOAT32 { gins(x86.AFMOVF, f, &r1) } else { gins(x86.AFMOVD, f, &r1) } // set round to zero mode during conversion var t1 gc.Node memname(&t1, gc.Types[gc.TUINT16]) var t2 gc.Node memname(&t2, gc.Types[gc.TUINT16]) gins(x86.AFSTCW, nil, &t1) gins(x86.AMOVW, ncon(0xf7f), &t2) gins(x86.AFLDCW, &t2, nil) if tt == gc.TINT16 { gins(x86.AFMOVWP, &r1, t) } else if tt == gc.TINT32 { gins(x86.AFMOVLP, &r1, t) } else { gins(x86.AFMOVVP, &r1, t) } gins(x86.AFLDCW, &t1, nil) return case gc.TFLOAT32<<16 | gc.TUINT64, gc.TFLOAT64<<16 | gc.TUINT64: if !gc.Ismem(f) { cvt = f.Type goto hardmem } bignodes() var f0 gc.Node gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0) var f1 gc.Node gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1) var ax gc.Node gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX) if ft == gc.TFLOAT32 { gins(x86.AFMOVF, f, &f0) } else { gins(x86.AFMOVD, f, &f0) } // if 0 > v { answer = 0 } gins(x86.AFMOVD, &zerof, &f0) gins(x86.AFUCOMP, &f0, &f1) gins(x86.AFSTSW, nil, &ax) gins(x86.ASAHF, nil, nil) p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0) // if 1<<64 <= v { answer = 0 too } gins(x86.AFMOVD, &two64f, &f0) gins(x86.AFUCOMP, &f0, &f1) gins(x86.AFSTSW, nil, &ax) gins(x86.ASAHF, nil, nil) p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0) gc.Patch(p1, gc.Pc) gins(x86.AFMOVVP, &f0, t) // don't care about t, but will pop the stack var thi gc.Node var tlo gc.Node split64(t, &tlo, &thi) gins(x86.AMOVL, ncon(0), &tlo) gins(x86.AMOVL, ncon(0), &thi) splitclean() p1 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p2, gc.Pc) // in range; algorithm is: // if small enough, use native float64 -> int64 conversion. // otherwise, subtract 2^63, convert, and add it back. // set round to zero mode during conversion var t1 gc.Node memname(&t1, gc.Types[gc.TUINT16]) var t2 gc.Node memname(&t2, gc.Types[gc.TUINT16]) gins(x86.AFSTCW, nil, &t1) gins(x86.AMOVW, ncon(0xf7f), &t2) gins(x86.AFLDCW, &t2, nil) // actual work gins(x86.AFMOVD, &two63f, &f0) gins(x86.AFUCOMP, &f0, &f1) gins(x86.AFSTSW, nil, &ax) gins(x86.ASAHF, nil, nil) p2 = gc.Gbranch(optoas(gc.OLE, gc.Types[tt]), nil, 0) gins(x86.AFMOVVP, &f0, t) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p2, gc.Pc) gins(x86.AFMOVD, &two63f, &f0) gins(x86.AFSUBDP, &f0, &f1) gins(x86.AFMOVVP, &f0, t) split64(t, &tlo, &thi) gins(x86.AXORL, ncon(0x80000000), &thi) // + 2^63 gc.Patch(p3, gc.Pc) splitclean() // restore rounding mode gins(x86.AFLDCW, &t1, nil) gc.Patch(p1, gc.Pc) return /* * integer to float */ case gc.TINT64<<16 | gc.TFLOAT32, gc.TINT64<<16 | gc.TFLOAT64: if t.Op == gc.OREGISTER { goto hardmem } var f0 gc.Node gc.Nodreg(&f0, t.Type, x86.REG_F0) gins(x86.AFMOVV, f, &f0) if tt == gc.TFLOAT32 { gins(x86.AFMOVFP, &f0, t) } else { gins(x86.AFMOVDP, &f0, t) } return // algorithm is: // if small enough, use native int64 -> float64 conversion. // otherwise, halve (rounding to odd?), convert, and double. case gc.TUINT64<<16 | gc.TFLOAT32, gc.TUINT64<<16 | gc.TFLOAT64: var ax gc.Node gc.Nodreg(&ax, gc.Types[gc.TUINT32], x86.REG_AX) var dx gc.Node gc.Nodreg(&dx, gc.Types[gc.TUINT32], x86.REG_DX) var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX) var t1 gc.Node gc.Tempname(&t1, f.Type) var tlo gc.Node var thi gc.Node split64(&t1, &tlo, &thi) gmove(f, &t1) gins(x86.ACMPL, &thi, ncon(0)) p1 := gc.Gbranch(x86.AJLT, nil, 0) // native var r1 gc.Node gc.Nodreg(&r1, gc.Types[tt], x86.REG_F0) gins(x86.AFMOVV, &t1, &r1) if tt == gc.TFLOAT32 { gins(x86.AFMOVFP, &r1, t) } else { gins(x86.AFMOVDP, &r1, t) } p2 := gc.Gbranch(obj.AJMP, nil, 0) // simulated gc.Patch(p1, gc.Pc) gmove(&tlo, &ax) gmove(&thi, &dx) p1 = gins(x86.ASHRL, ncon(1), &ax) p1.From.Index = x86.REG_DX // double-width shift DX -> AX p1.From.Scale = 0 gins(x86.AMOVL, ncon(0), &cx) gins(x86.ASETCC, nil, &cx) gins(x86.AORL, &cx, &ax) gins(x86.ASHRL, ncon(1), &dx) gmove(&dx, &thi) gmove(&ax, &tlo) gc.Nodreg(&r1, gc.Types[tt], x86.REG_F0) var r2 gc.Node gc.Nodreg(&r2, gc.Types[tt], x86.REG_F0+1) gins(x86.AFMOVV, &t1, &r1) gins(x86.AFMOVD, &r1, &r1) gins(x86.AFADDDP, &r1, &r2) if tt == gc.TFLOAT32 { gins(x86.AFMOVFP, &r1, t) } else { gins(x86.AFMOVDP, &r1, t) } gc.Patch(p2, gc.Pc) splitclean() return } // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return // requires memory intermediate hardmem: gc.Tempname(&r1, cvt) gmove(f, &r1) gmove(&r1, t) return }