Exemple #1
0
func stacksplitPost(ctxt *obj.Link, p *obj.Prog, pPre *obj.Prog, pPreempt *obj.Prog) *obj.Prog {

	// MOVD	LR, R5
	p = obj.Appendp(ctxt, p)
	pPre.Pcond = p
	p.As = AMOVD
	p.From.Type = obj.TYPE_REG
	p.From.Reg = REG_LR
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R5
	if pPreempt != nil {
		pPreempt.Pcond = p
	}

	// BL	runtime.morestack(SB)
	p = obj.Appendp(ctxt, p)

	p.As = ABL
	p.To.Type = obj.TYPE_BRANCH
	if ctxt.Cursym.Cfunc {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestackc", 0)
	} else if ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0 {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack_noctxt", 0)
	} else {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack", 0)
	}

	// BR	start
	p = obj.Appendp(ctxt, p)

	p.As = ABR
	p.To.Type = obj.TYPE_BRANCH
	p.Pcond = ctxt.Cursym.Text.Link
	return p
}
Exemple #2
0
func initdiv(ctxt *obj.Link) {
	if ctxt.Sym_div != nil {
		return
	}
	ctxt.Sym_div = obj.Linklookup(ctxt, "_div", 0)
	ctxt.Sym_divu = obj.Linklookup(ctxt, "_divu", 0)
	ctxt.Sym_mod = obj.Linklookup(ctxt, "_mod", 0)
	ctxt.Sym_modu = obj.Linklookup(ctxt, "_modu", 0)
}
Exemple #3
0
func stacksplitPost(ctxt *obj.Link, p *obj.Prog, pPre *obj.Prog, pPreempt *obj.Prog, framesize int32) *obj.Prog {
	// Now we are at the end of the function, but logically
	// we are still in function prologue. We need to fix the
	// SP data and PCDATA.
	spfix := obj.Appendp(ctxt, p)
	spfix.As = obj.ANOP
	spfix.Spadj = -framesize

	pcdata := obj.Appendp(ctxt, spfix)
	pcdata.Lineno = ctxt.Cursym.Text.Lineno
	pcdata.Mode = ctxt.Cursym.Text.Mode
	pcdata.As = obj.APCDATA
	pcdata.From.Type = obj.TYPE_CONST
	pcdata.From.Offset = obj.PCDATA_StackMapIndex
	pcdata.To.Type = obj.TYPE_CONST
	pcdata.To.Offset = -1 // pcdata starts at -1 at function entry

	// MOVD	LR, R5
	p = obj.Appendp(ctxt, pcdata)
	pPre.Pcond = p
	p.As = AMOVD
	p.From.Type = obj.TYPE_REG
	p.From.Reg = REG_LR
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R5
	if pPreempt != nil {
		pPreempt.Pcond = p
	}

	// BL	runtime.morestack(SB)
	p = obj.Appendp(ctxt, p)

	p.As = ABL
	p.To.Type = obj.TYPE_BRANCH
	if ctxt.Cursym.Cfunc {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestackc", 0)
	} else if ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0 {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack_noctxt", 0)
	} else {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack", 0)
	}

	// BR	start
	p = obj.Appendp(ctxt, p)

	p.As = ABR
	p.To.Type = obj.TYPE_BRANCH
	p.Pcond = ctxt.Cursym.Text.Link
	return p
}
Exemple #4
0
func stringsym(s string) (data *obj.LSym) {
	var symname string
	if len(s) > 100 {
		// Huge strings are hashed to avoid long names in object files.
		// Indulge in some paranoia by writing the length of s, too,
		// as protection against length extension attacks.
		h := sha256.New()
		io.WriteString(h, s)
		symname = fmt.Sprintf(".gostring.%d.%x", len(s), h.Sum(nil))
	} else {
		// Small strings get named directly by their contents.
		symname = strconv.Quote(s)
	}

	const prefix = "go.string."
	symdataname := prefix + symname

	symdata := obj.Linklookup(Ctxt, symdataname, 0)

	if !symdata.SeenGlobl() {
		// string data
		off := dsnameLSym(symdata, 0, s)
		ggloblLSym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)
	}

	return symdata
}
Exemple #5
0
func rewriteToPcrel(ctxt *obj.Link, p *obj.Prog) {
	// RegTo2 is set on the instructions we insert here so they don't get
	// processed twice.
	if p.RegTo2 != 0 {
		return
	}
	if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP {
		return
	}
	// Any Prog (aside from the above special cases) with an Addr with Name ==
	// NAME_EXTERN, NAME_STATIC or NAME_GOTREF has a CALL __x86.get_pc_thunk.cx
	// inserted before it.
	isName := func(a *obj.Addr) bool {
		if a.Sym == nil || (a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR) || a.Reg != 0 {
			return false
		}
		if a.Sym.Type == obj.STLSBSS {
			return false
		}
		return a.Name == obj.NAME_EXTERN || a.Name == obj.NAME_STATIC || a.Name == obj.NAME_GOTREF
	}

	if isName(&p.From) && p.From.Type == obj.TYPE_ADDR {
		// Handle things like "MOVL $sym, (SP)" or "PUSHL $sym" by rewriting
		// to "MOVL $sym, CX; MOVL CX, (SP)" or "MOVL $sym, CX; PUSHL CX"
		// respectively.
		if p.To.Type != obj.TYPE_REG {
			q := obj.Appendp(ctxt, p)
			q.As = p.As
			q.From.Type = obj.TYPE_REG
			q.From.Reg = REG_CX
			q.To = p.To
			p.As = AMOVL
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REG_CX
			p.To.Sym = nil
			p.To.Name = obj.NAME_NONE
		}
	}

	if !isName(&p.From) && !isName(&p.To) && (p.From3 == nil || !isName(p.From3)) {
		return
	}
	q := obj.Appendp(ctxt, p)
	q.RegTo2 = 1
	r := obj.Appendp(ctxt, q)
	r.RegTo2 = 1
	q.As = obj.ACALL
	q.To.Sym = obj.Linklookup(ctxt, "__x86.get_pc_thunk.cx", 0)
	q.To.Type = obj.TYPE_MEM
	q.To.Name = obj.NAME_EXTERN
	q.To.Sym.Local = true
	r.As = p.As
	r.Scond = p.Scond
	r.From = p.From
	r.From3 = p.From3
	r.Reg = p.Reg
	r.To = p.To
	obj.Nopout(p)
}
Exemple #6
0
// symbolReference parses a symbol that is known not to be a register.
func (p *Parser) symbolReference(a *obj.Addr, name string, prefix rune) {
	// Identifier is a name.
	switch prefix {
	case 0:
		a.Type = obj.TYPE_MEM
	case '$':
		a.Type = obj.TYPE_ADDR
	case '*':
		a.Type = obj.TYPE_INDIR
	}
	// Weirdness with statics: Might now have "<>".
	isStatic := 0 // TODO: Really a boolean, but Linklookup wants a "version" integer.
	if p.peek() == '<' {
		isStatic = 1
		p.next()
		p.get('>')
	}
	if p.peek() == '+' || p.peek() == '-' {
		a.Offset = int64(p.expr())
	}
	a.Sym = obj.Linklookup(p.ctxt, name, isStatic)
	if p.peek() == scanner.EOF {
		if prefix != 0 {
			p.errorf("illegal addressing mode for symbol %s", name)
		}
		return
	}
	// Expect (SB) or (FP), (PC), (SB), or (SP)
	p.get('(')
	reg := p.get(scanner.Ident).String()
	p.get(')')
	p.setPseudoRegister(a, reg, isStatic != 0, prefix)
}
Exemple #7
0
func dimportpath(p *Pkg) {
	if p.Pathsym != nil {
		return
	}

	// If we are compiling the runtime package, there are two runtime packages around
	// -- localpkg and Runtimepkg. We don't want to produce import path symbols for
	// both of them, so just produce one for localpkg.
	if myimportpath == "runtime" && p == Runtimepkg {
		return
	}

	var str string
	if p == localpkg {
		// Note: myimportpath != "", or else dgopkgpath won't call dimportpath.
		str = myimportpath
	} else {
		str = p.Path
	}

	s := obj.Linklookup(Ctxt, "type..importpath."+p.Prefix+".", 0)
	ot := dnameData(s, 0, str, "", nil, false)
	ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
	p.Pathsym = s
}
Exemple #8
0
// dname creates a reflect.name for a struct field or method.
func dname(name, tag string, pkg *Pkg, exported bool) *obj.LSym {
	// Write out data as "type.." to signal two things to the
	// linker, first that when dynamically linking, the symbol
	// should be moved to a relro section, and second that the
	// contents should not be decoded as a type.
	sname := "type..namedata."
	if pkg == nil {
		// In the common case, share data with other packages.
		if name == "" {
			if exported {
				sname += "-noname-exported." + tag
			} else {
				sname += "-noname-unexported." + tag
			}
		} else {
			sname += name + "." + tag
		}
	} else {
		sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount)
		dnameCount++
	}
	s := obj.Linklookup(Ctxt, sname, 0)
	if len(s.P) > 0 {
		return s
	}
	ot := dnameData(s, 0, name, tag, pkg, exported)
	ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
	return s
}
Exemple #9
0
// dname dumps a reflect.name for a struct field or method.
func dname(s *Sym, ot int, name, tag string, pkg *Pkg, exported bool) int {
	if len(name) > 1<<16-1 {
		Fatalf("name too long: %s", name)
	}
	if len(tag) > 1<<16-1 {
		Fatalf("tag too long: %s", tag)
	}

	// Encode name and tag. See reflect/type.go for details.
	var bits byte
	l := 1 + 2 + len(name)
	if exported {
		bits |= 1 << 0
	}
	if len(tag) > 0 {
		l += 2 + len(tag)
		bits |= 1 << 1
	}
	if pkg != nil {
		bits |= 1 << 2
	}
	b := make([]byte, l)
	b[0] = bits
	b[1] = uint8(len(name) >> 8)
	b[2] = uint8(len(name))
	copy(b[3:], name)
	if len(tag) > 0 {
		tb := b[3+len(name):]
		tb[0] = uint8(len(tag) >> 8)
		tb[1] = uint8(len(tag))
		copy(tb[2:], tag)
	}

	// Very few names require a pkgPath *string (only those
	// defined in a different package than their type). So if
	// there is no pkgPath, we treat the name contents as string
	// data that duplicates across packages.
	var bsym *obj.LSym
	if pkg == nil {
		_, bsym = stringsym(string(b))
	} else {
		// Write out data as "type.." to signal two things to the
		// linker, first that when dynamically linking, the symbol
		// should be moved to a relro section, and second that the
		// contents should not be decoded as a type.
		bsymname := fmt.Sprintf(`type..methodname."".%d`, dnameCount)
		dnameCount++
		bsym = obj.Linklookup(Ctxt, bsymname, 0)
		bsym.P = b
		boff := len(b)
		boff = int(Rnd(int64(boff), int64(Widthptr)))
		boff = dgopkgpathLSym(bsym, boff, pkg)
		ggloblLSym(bsym, int32(boff), obj.RODATA|obj.LOCAL)
	}

	ot = dsymptrLSym(Linksym(s), ot, bsym, 0)

	return ot
}
Exemple #10
0
func stringsym(s string) (hdr, data *obj.LSym) {
	var symname string
	if len(s) > 100 {
		// Huge strings are hashed to avoid long names in object files.
		// Indulge in some paranoia by writing the length of s, too,
		// as protection against length extension attacks.
		h := sha256.New()
		io.WriteString(h, s)
		symname = fmt.Sprintf(".gostring.%d.%x", len(s), h.Sum(nil))
	} else {
		// Small strings get named directly by their contents.
		symname = strconv.Quote(s)
	}

	const prefix = "go.string."
	symdataname := prefix + symname

	// All the strings have the same prefix, so ignore it for map
	// purposes, but use a slice of the symbol name string to
	// reduce long-term memory overhead.
	key := symdataname[len(prefix):]

	if syms, ok := stringConstants[key]; ok {
		return syms.hdr, syms.data
	}

	symhdrname := "go.string.hdr." + symname

	symhdr := obj.Linklookup(Ctxt, symhdrname, 0)
	symdata := obj.Linklookup(Ctxt, symdataname, 0)

	stringConstants[key] = stringConstantSyms{symhdr, symdata}

	// string header
	off := 0
	off = dsymptrLSym(symhdr, off, symdata, 0)
	off = duintxxLSym(symhdr, off, uint64(len(s)), Widthint)
	ggloblLSym(symhdr, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)

	// string data
	off = dsnameLSym(symdata, 0, s)
	ggloblLSym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)

	return symhdr, symdata
}
Exemple #11
0
// dgopkgpathOffLSym writes an offset relocation in s at offset ot to the pkg path symbol.
func dgopkgpathOffLSym(s *obj.LSym, ot int, pkg *Pkg) int {
	if pkg == nil {
		return duintxxLSym(s, ot, 0, 4)
	}
	if pkg == localpkg && myimportpath == "" {
		// If we don't know the full import path of the package being compiled
		// (i.e. -p was not passed on the compiler command line), emit a reference to
		// type..importpath.""., which the linker will rewrite using the correct import path.
		// Every package that imports this one directly defines the symbol.
		// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
		ns := obj.Linklookup(Ctxt, `type..importpath."".`, 0)
		return dsymptrOffLSym(s, ot, ns, 0)
	}

	dimportpath(pkg)
	return dsymptrOffLSym(s, ot, pkg.Pathsym, 0)
}
Exemple #12
0
func Linksym(s *Sym) *obj.LSym {
	if s == nil {
		return nil
	}
	if s.Lsym != nil {
		return s.Lsym
	}
	var name string
	if isblanksym(s) {
		name = "_"
	} else if s.Linkname != "" {
		name = s.Linkname
	} else {
		name = s.Pkg.Prefix + "." + s.Name
	}

	ls := obj.Linklookup(Ctxt, name, 0)
	s.Lsym = ls
	return ls
}
Exemple #13
0
func compile(fn *Node) {
	if Newproc == nil {
		Newproc = Sysfunc("newproc")
		Deferproc = Sysfunc("deferproc")
		Deferreturn = Sysfunc("deferreturn")
		panicindex = Sysfunc("panicindex")
		panicslice = Sysfunc("panicslice")
		panicdivide = Sysfunc("panicdivide")
		growslice = Sysfunc("growslice")
		panicdottype = Sysfunc("panicdottype")
	}

	defer func(lno int32) {
		lineno = lno
	}(setlineno(fn))

	Curfn = fn
	dowidth(Curfn.Type)

	if fn.Nbody.Len() == 0 {
		if pure_go || strings.HasPrefix(fn.Func.Nname.Sym.Name, "init.") {
			yyerror("missing function body for %q", fn.Func.Nname.Sym.Name)
			return
		}

		emitptrargsmap()
		return
	}

	saveerrors()

	if Curfn.Type.FuncType().Outnamed {
		// add clearing of the output parameters
		for _, t := range Curfn.Type.Results().Fields().Slice() {
			if t.Nname != nil {
				n := nod(OAS, t.Nname, nil)
				n = typecheck(n, Etop)
				Curfn.Nbody.Prepend(n)
			}
		}
	}

	order(Curfn)
	if nerrors != 0 {
		return
	}

	hasdefer = false
	walk(Curfn)
	if nerrors != 0 {
		return
	}
	if instrumenting {
		instrument(Curfn)
	}
	if nerrors != 0 {
		return
	}

	// Build an SSA backend function.
	ssafn := buildssa(Curfn)
	if nerrors != 0 {
		return
	}

	newplist()

	setlineno(Curfn)

	nam := Curfn.Func.Nname
	if isblank(nam) {
		nam = nil
	}
	ptxt := Gins(obj.ATEXT, nam, nil)
	ptxt.From3 = new(obj.Addr)
	if fn.Func.Dupok {
		ptxt.From3.Offset |= obj.DUPOK
	}
	if fn.Func.Wrapper {
		ptxt.From3.Offset |= obj.WRAPPER
	}
	if fn.Func.Needctxt {
		ptxt.From3.Offset |= obj.NEEDCTXT
	}
	if fn.Func.Pragma&Nosplit != 0 {
		ptxt.From3.Offset |= obj.NOSPLIT
	}
	if fn.Func.ReflectMethod {
		ptxt.From3.Offset |= obj.REFLECTMETHOD
	}
	if fn.Func.Pragma&Systemstack != 0 {
		ptxt.From.Sym.Set(obj.AttrCFunc, true)
	}

	// Clumsy but important.
	// See test/recover.go for test cases and src/reflect/value.go
	// for the actual functions being considered.
	if myimportpath == "reflect" {
		if Curfn.Func.Nname.Sym.Name == "callReflect" || Curfn.Func.Nname.Sym.Name == "callMethod" {
			ptxt.From3.Offset |= obj.WRAPPER
		}
	}

	gcargs := makefuncdatasym("gcargs·", obj.FUNCDATA_ArgsPointerMaps)
	gclocals := makefuncdatasym("gclocals·", obj.FUNCDATA_LocalsPointerMaps)

	if obj.Fieldtrack_enabled != 0 && len(Curfn.Func.FieldTrack) > 0 {
		trackSyms := make([]*Sym, 0, len(Curfn.Func.FieldTrack))
		for sym := range Curfn.Func.FieldTrack {
			trackSyms = append(trackSyms, sym)
		}
		sort.Sort(symByName(trackSyms))
		for _, sym := range trackSyms {
			gtrack(sym)
		}
	}

	for _, n := range fn.Func.Dcl {
		if n.Op != ONAME { // might be OTYPE or OLITERAL
			continue
		}
		switch n.Class {
		case PAUTO:
			if !n.Used {
				continue
			}
			fallthrough
		case PPARAM, PPARAMOUT:
			p := Gins(obj.ATYPE, n, nil)
			p.From.Sym = obj.Linklookup(Ctxt, n.Sym.Name, 0)
			p.To.Type = obj.TYPE_MEM
			p.To.Name = obj.NAME_EXTERN
			p.To.Sym = Linksym(ngotype(n))
		}
	}

	genssa(ssafn, ptxt, gcargs, gclocals)
	ssafn.Free()
}
Exemple #14
0
Fichier : y.go Projet : Ericean/go
func (yyrcvr *yyParserImpl) Parse(yylex yyLexer) int {
	var yyn int
	var yylval yySymType
	var yyVAL yySymType
	var yyDollar []yySymType
	yyS := make([]yySymType, yyMaxDepth)

	Nerrs := 0   /* number of errors */
	Errflag := 0 /* error recovery flag */
	yystate := 0
	yychar := -1
	yytoken := -1 // yychar translated into internal numbering
	yyrcvr.lookahead = func() int { return yychar }
	defer func() {
		// Make sure we report no lookahead when not parsing.
		yystate = -1
		yychar = -1
		yytoken = -1
	}()
	yyp := -1
	goto yystack

ret0:
	return 0

ret1:
	return 1

yystack:
	/* put a state and value onto the stack */
	if yyDebug >= 4 {
		__yyfmt__.Printf("char %v in %v\n", yyTokname(yytoken), yyStatname(yystate))
	}

	yyp++
	if yyp >= len(yyS) {
		nyys := make([]yySymType, len(yyS)*2)
		copy(nyys, yyS)
		yyS = nyys
	}
	yyS[yyp] = yyVAL
	yyS[yyp].yys = yystate

yynewstate:
	yyn = yyPact[yystate]
	if yyn <= yyFlag {
		goto yydefault /* simple state */
	}
	if yychar < 0 {
		yychar, yytoken = yylex1(yylex, &yylval)
	}
	yyn += yytoken
	if yyn < 0 || yyn >= yyLast {
		goto yydefault
	}
	yyn = yyAct[yyn]
	if yyChk[yyn] == yytoken { /* valid shift */
		yychar = -1
		yytoken = -1
		yyVAL = yylval
		yystate = yyn
		if Errflag > 0 {
			Errflag--
		}
		goto yystack
	}

yydefault:
	/* default state action */
	yyn = yyDef[yystate]
	if yyn == -2 {
		if yychar < 0 {
			yychar, yytoken = yylex1(yylex, &yylval)
		}

		/* look through exception table */
		xi := 0
		for {
			if yyExca[xi+0] == -1 && yyExca[xi+1] == yystate {
				break
			}
			xi += 2
		}
		for xi += 2; ; xi += 2 {
			yyn = yyExca[xi+0]
			if yyn < 0 || yyn == yytoken {
				break
			}
		}
		yyn = yyExca[xi+1]
		if yyn < 0 {
			goto ret0
		}
	}
	if yyn == 0 {
		/* error ... attempt to resume parsing */
		switch Errflag {
		case 0: /* brand new error */
			yylex.Error(yyErrorMessage(yystate, yytoken))
			Nerrs++
			if yyDebug >= 1 {
				__yyfmt__.Printf("%s", yyStatname(yystate))
				__yyfmt__.Printf(" saw %s\n", yyTokname(yytoken))
			}
			fallthrough

		case 1, 2: /* incompletely recovered error ... try again */
			Errflag = 3

			/* find a state where "error" is a legal shift action */
			for yyp >= 0 {
				yyn = yyPact[yyS[yyp].yys] + yyErrCode
				if yyn >= 0 && yyn < yyLast {
					yystate = yyAct[yyn] /* simulate a shift of "error" */
					if yyChk[yystate] == yyErrCode {
						goto yystack
					}
				}

				/* the current p has no shift on "error", pop stack */
				if yyDebug >= 2 {
					__yyfmt__.Printf("error recovery pops state %d\n", yyS[yyp].yys)
				}
				yyp--
			}
			/* there is no state on the stack with an error shift ... abort */
			goto ret1

		case 3: /* no shift yet; clobber input char */
			if yyDebug >= 2 {
				__yyfmt__.Printf("error recovery discards %s\n", yyTokname(yytoken))
			}
			if yytoken == yyEofCode {
				goto ret1
			}
			yychar = -1
			yytoken = -1
			goto yynewstate /* try again in the same state */
		}
	}

	/* reduction by production yyn */
	if yyDebug >= 2 {
		__yyfmt__.Printf("reduce %v in:\n\t%v\n", yyn, yyStatname(yystate))
	}

	yynt := yyn
	yypt := yyp
	_ = yypt // guard against "declared and not used"

	yyp -= yyR2[yyn]
	// yyp is now the index of $0. Perform the default action. Iff the
	// reduced production is ε, $1 is possibly out of range.
	if yyp+1 >= len(yyS) {
		nyys := make([]yySymType, len(yyS)*2)
		copy(nyys, yyS)
		yyS = nyys
	}
	yyVAL = yyS[yyp+1]

	/* consult goto table to find next state */
	yyn = yyR1[yyn]
	yyg := yyPgo[yyn]
	yyj := yyg + yyS[yyp].yys + 1

	if yyj >= yyLast {
		yystate = yyAct[yyg]
	} else {
		yystate = yyAct[yyj]
		if yyChk[yystate] != -yyn {
			yystate = yyAct[yyg]
		}
	}
	// dummy call; replaced with literal code
	switch yynt {

	case 2:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:73
		{
			stmtline = asm.Lineno
		}
	case 4:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:80
		{
			yyDollar[1].sym = asm.LabelLookup(yyDollar[1].sym)
			if yyDollar[1].sym.Type == LLAB && yyDollar[1].sym.Value != int64(asm.PC) {
				yyerror("redeclaration of %s", yyDollar[1].sym.Labelname)
			}
			yyDollar[1].sym.Type = LLAB
			yyDollar[1].sym.Value = int64(asm.PC)
		}
	case 6:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:90
		{
			yyDollar[1].sym.Type = LVAR
			yyDollar[1].sym.Value = int64(yyDollar[3].lval)
		}
	case 7:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:95
		{
			if yyDollar[1].sym.Value != int64(yyDollar[3].lval) {
				yyerror("redeclaration of %s", yyDollar[1].sym.Name)
			}
			yyDollar[1].sym.Value = int64(yyDollar[3].lval)
		}
	case 11:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:110
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &yyDollar[7].addr)
		}
	case 12:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:114
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &nullgen)
		}
	case 13:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:118
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr)
		}
	case 14:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:125
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr)
		}
	case 15:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:132
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr)
		}
	case 16:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:139
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &yyDollar[4].addr)
		}
	case 17:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:143
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &yyDollar[4].addr)
		}
	case 18:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:150
		{
			outcode(yyDollar[1].lval, Always, &nullgen, 0, &yyDollar[3].addr)
		}
	case 19:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:157
		{
			outcode(yyDollar[1].lval, Always, &nullgen, 0, &yyDollar[3].addr)
		}
	case 20:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:164
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &yyDollar[4].addr)
		}
	case 21:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:171
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &nullgen)
		}
	case 22:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:178
		{
			var g obj.Addr

			g = nullgen
			g.Type = obj.TYPE_REGLIST
			g.Offset = int64(yyDollar[6].lval)
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &g)
		}
	case 23:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:187
		{
			var g obj.Addr

			g = nullgen
			g.Type = obj.TYPE_REGLIST
			g.Offset = int64(yyDollar[4].lval)
			outcode(yyDollar[1].lval, yyDollar[2].lval, &g, 0, &yyDollar[7].addr)
		}
	case 24:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:199
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[5].addr, int32(yyDollar[3].addr.Reg), &yyDollar[7].addr)
		}
	case 25:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:203
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[5].addr, int32(yyDollar[3].addr.Reg), &yyDollar[3].addr)
		}
	case 26:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:207
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[4].addr, int32(yyDollar[6].addr.Reg), &yyDollar[6].addr)
		}
	case 27:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:214
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &nullgen)
		}
	case 28:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:221
		{
			asm.Settext(yyDollar[2].addr.Sym)
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[5].addr)
			if asm.Pass > 1 {
				lastpc.From3 = new(obj.Addr)
			}
		}
	case 29:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:229
		{
			asm.Settext(yyDollar[2].addr.Sym)
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[7].addr)
			if asm.Pass > 1 {
				lastpc.From3 = new(obj.Addr)
				lastpc.From3.Type = obj.TYPE_CONST
				lastpc.From3.Offset = int64(yyDollar[4].lval)
			}
		}
	case 30:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:242
		{
			asm.Settext(yyDollar[2].addr.Sym)
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[4].addr)
			if asm.Pass > 1 {
				lastpc.From3 = new(obj.Addr)
			}
		}
	case 31:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:250
		{
			asm.Settext(yyDollar[2].addr.Sym)
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[6].addr)
			if asm.Pass > 1 {
				lastpc.From3 = new(obj.Addr)
				lastpc.From3.Type = obj.TYPE_CONST
				lastpc.From3.Offset = int64(yyDollar[4].lval)
			}
		}
	case 32:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:264
		{
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[6].addr)
			if asm.Pass > 1 {
				lastpc.From3 = new(obj.Addr)
				lastpc.From3.Type = obj.TYPE_CONST
				lastpc.From3.Offset = int64(yyDollar[4].lval)
			}
		}
	case 33:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:276
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &nullgen)
		}
	case 34:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:283
		{
			outcode(yyDollar[1].lval, Always, &nullgen, 0, &yyDollar[3].addr)
		}
	case 35:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:290
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr)
		}
	case 36:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:294
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr)
		}
	case 37:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:298
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &yyDollar[7].addr)
		}
	case 38:
		yyDollar = yyS[yypt-6 : yypt+1]
		//line a.y:302
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, int32(yyDollar[5].addr.Reg), &nullgen)
		}
	case 39:
		yyDollar = yyS[yypt-12 : yypt+1]
		//line a.y:309
		{
			var g obj.Addr

			g = nullgen
			g.Type = obj.TYPE_CONST
			g.Offset = int64(
				(0xe << 24) | /* opcode */
					(yyDollar[1].lval << 20) | /* MCR/MRC */
					((yyDollar[2].lval ^ C_SCOND_XOR) << 28) | /* scond */
					((yyDollar[3].lval & 15) << 8) | /* coprocessor number */
					((yyDollar[5].lval & 7) << 21) | /* coprocessor operation */
					((yyDollar[7].lval & 15) << 12) | /* arm register */
					((yyDollar[9].lval & 15) << 16) | /* Crn */
					((yyDollar[11].lval & 15) << 0) | /* Crm */
					((yyDollar[12].lval & 7) << 5) | /* coprocessor information */
					(1 << 4)) /* must be set */
			outcode(AMRC, Always, &nullgen, 0, &g)
		}
	case 40:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:321
		{
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, int32(yyDollar[5].addr.Reg), &yyDollar[7].addr)
		}
	case 41:
		yyDollar = yyS[yypt-9 : yypt+1]
		//line a.y:329
		{
			yyDollar[7].addr.Type = obj.TYPE_REGREG2
			yyDollar[7].addr.Offset = int64(yyDollar[9].lval)
			outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, int32(yyDollar[5].addr.Reg), &yyDollar[7].addr)
		}
	case 42:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:338
		{
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &nullgen)
		}
	case 43:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:345
		{
			if yyDollar[2].addr.Type != obj.TYPE_CONST || yyDollar[4].addr.Type != obj.TYPE_CONST {
				yyerror("arguments to PCDATA must be integer constants")
			}
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[4].addr)
		}
	case 44:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:355
		{
			if yyDollar[2].addr.Type != obj.TYPE_CONST {
				yyerror("index for FUNCDATA must be integer constant")
			}
			if yyDollar[4].addr.Type != obj.NAME_EXTERN && yyDollar[4].addr.Type != obj.NAME_STATIC && yyDollar[4].addr.Type != obj.TYPE_MEM {
				yyerror("value for FUNCDATA must be symbol reference")
			}
			outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[4].addr)
		}
	case 45:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:368
		{
			outcode(yyDollar[1].lval, Always, &nullgen, 0, &nullgen)
		}
	case 46:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:374
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_TEXTSIZE
			yyVAL.addr.Offset = int64(yyDollar[1].lval)
			yyVAL.addr.Val = int32(obj.ArgsSizeUnknown)
		}
	case 47:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:381
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_TEXTSIZE
			yyVAL.addr.Offset = -int64(yyDollar[2].lval)
			yyVAL.addr.Val = int32(obj.ArgsSizeUnknown)
		}
	case 48:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:388
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_TEXTSIZE
			yyVAL.addr.Offset = int64(yyDollar[1].lval)
			yyVAL.addr.Val = int32(yyDollar[3].lval)
		}
	case 49:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:395
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_TEXTSIZE
			yyVAL.addr.Offset = -int64(yyDollar[2].lval)
			yyVAL.addr.Val = int32(yyDollar[4].lval)
		}
	case 50:
		yyDollar = yyS[yypt-0 : yypt+1]
		//line a.y:403
		{
			yyVAL.lval = Always
		}
	case 51:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:407
		{
			yyVAL.lval = (yyDollar[1].lval & ^C_SCOND) | yyDollar[2].lval
		}
	case 52:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:411
		{
			yyVAL.lval = yyDollar[1].lval | yyDollar[2].lval
		}
	case 55:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:420
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_BRANCH
			yyVAL.addr.Offset = int64(yyDollar[1].lval) + int64(asm.PC)
		}
	case 56:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:426
		{
			yyDollar[1].sym = asm.LabelLookup(yyDollar[1].sym)
			yyVAL.addr = nullgen
			if asm.Pass == 2 && yyDollar[1].sym.Type != LLAB {
				yyerror("undefined label: %s", yyDollar[1].sym.Labelname)
			}
			yyVAL.addr.Type = obj.TYPE_BRANCH
			yyVAL.addr.Offset = yyDollar[1].sym.Value + int64(yyDollar[2].lval)
		}
	case 57:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:437
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_CONST
			yyVAL.addr.Offset = int64(yyDollar[2].lval)
		}
	case 58:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:443
		{
			yyVAL.addr = yyDollar[2].addr
			yyVAL.addr.Type = obj.TYPE_ADDR
		}
	case 59:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:448
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_SCONST
			yyVAL.addr.Val = yyDollar[2].sval
		}
	case 61:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:457
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_FCONST
			yyVAL.addr.Val = yyDollar[2].dval
		}
	case 62:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:463
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_FCONST
			yyVAL.addr.Val = -yyDollar[3].dval
		}
	case 63:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:471
		{
			yyVAL.lval = 1 << uint(yyDollar[1].lval&15)
		}
	case 64:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:475
		{
			yyVAL.lval = 0
			for i := yyDollar[1].lval; i <= yyDollar[3].lval; i++ {
				yyVAL.lval |= 1 << uint(i&15)
			}
			for i := yyDollar[3].lval; i <= yyDollar[1].lval; i++ {
				yyVAL.lval |= 1 << uint(i&15)
			}
		}
	case 65:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:485
		{
			yyVAL.lval = (1 << uint(yyDollar[1].lval&15)) | yyDollar[3].lval
		}
	case 69:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:494
		{
			yyVAL.addr = yyDollar[1].addr
			yyVAL.addr.Reg = int16(yyDollar[3].lval)
		}
	case 70:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:499
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_REG
			yyVAL.addr.Reg = int16(yyDollar[1].lval)
		}
	case 71:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:505
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_REG
			yyVAL.addr.Reg = int16(yyDollar[1].lval)
		}
	case 72:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:511
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Offset = int64(yyDollar[1].lval)
		}
	case 76:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:522
		{
			yyVAL.addr = yyDollar[1].addr
			if yyDollar[1].addr.Name != obj.NAME_EXTERN && yyDollar[1].addr.Name != obj.NAME_STATIC {
			}
		}
	case 77:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:530
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Reg = int16(yyDollar[2].lval)
			yyVAL.addr.Offset = 0
		}
	case 79:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:540
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Reg = int16(yyDollar[3].lval)
			yyVAL.addr.Offset = int64(yyDollar[1].lval)
		}
	case 81:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:550
		{
			yyVAL.addr = yyDollar[1].addr
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Reg = int16(yyDollar[3].lval)
		}
	case 86:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:563
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_CONST
			yyVAL.addr.Offset = int64(yyDollar[2].lval)
		}
	case 87:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:571
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_REG
			yyVAL.addr.Reg = int16(yyDollar[1].lval)
		}
	case 88:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:579
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_REGREG
			yyVAL.addr.Reg = int16(yyDollar[2].lval)
			yyVAL.addr.Offset = int64(yyDollar[4].lval)
		}
	case 89:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:588
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_SHIFT
			yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (0 << 5)
		}
	case 90:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:594
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_SHIFT
			yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (1 << 5)
		}
	case 91:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:600
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_SHIFT
			yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (2 << 5)
		}
	case 92:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:606
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_SHIFT
			yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (3 << 5)
		}
	case 93:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:614
		{
			if yyVAL.lval < REG_R0 || yyVAL.lval > REG_R15 {
				print("register value out of range\n")
			}
			yyVAL.lval = ((yyDollar[1].lval & 15) << 8) | (1 << 4)
		}
	case 94:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:621
		{
			if yyVAL.lval < 0 || yyVAL.lval >= 32 {
				print("shift value out of range\n")
			}
			yyVAL.lval = (yyDollar[1].lval & 31) << 7
		}
	case 96:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:631
		{
			yyVAL.lval = REGPC
		}
	case 97:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:635
		{
			if yyDollar[3].lval < 0 || yyDollar[3].lval >= NREG {
				print("register value out of range\n")
			}
			yyVAL.lval = REG_R0 + yyDollar[3].lval
		}
	case 99:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:645
		{
			yyVAL.lval = REGSP
		}
	case 101:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:652
		{
			if yyDollar[3].lval < 0 || yyDollar[3].lval >= NREG {
				print("register value out of range\n")
			}
			yyVAL.lval = yyDollar[3].lval // TODO(rsc): REG_C0+$3
		}
	case 104:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:665
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_REG
			yyVAL.addr.Reg = int16(yyDollar[1].lval)
		}
	case 105:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:671
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_REG
			yyVAL.addr.Reg = int16(REG_F0 + yyDollar[3].lval)
		}
	case 106:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:679
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Name = int8(yyDollar[3].lval)
			yyVAL.addr.Sym = nil
			yyVAL.addr.Offset = int64(yyDollar[1].lval)
		}
	case 107:
		yyDollar = yyS[yypt-5 : yypt+1]
		//line a.y:687
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Name = int8(yyDollar[4].lval)
			yyVAL.addr.Sym = obj.Linklookup(asm.Ctxt, yyDollar[1].sym.Name, 0)
			yyVAL.addr.Offset = int64(yyDollar[2].lval)
		}
	case 108:
		yyDollar = yyS[yypt-7 : yypt+1]
		//line a.y:695
		{
			yyVAL.addr = nullgen
			yyVAL.addr.Type = obj.TYPE_MEM
			yyVAL.addr.Name = obj.NAME_STATIC
			yyVAL.addr.Sym = obj.Linklookup(asm.Ctxt, yyDollar[1].sym.Name, 1)
			yyVAL.addr.Offset = int64(yyDollar[4].lval)
		}
	case 109:
		yyDollar = yyS[yypt-0 : yypt+1]
		//line a.y:704
		{
			yyVAL.lval = 0
		}
	case 110:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:708
		{
			yyVAL.lval = yyDollar[2].lval
		}
	case 111:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:712
		{
			yyVAL.lval = -yyDollar[2].lval
		}
	case 116:
		yyDollar = yyS[yypt-1 : yypt+1]
		//line a.y:724
		{
			yyVAL.lval = int32(yyDollar[1].sym.Value)
		}
	case 117:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:728
		{
			yyVAL.lval = -yyDollar[2].lval
		}
	case 118:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:732
		{
			yyVAL.lval = yyDollar[2].lval
		}
	case 119:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:736
		{
			yyVAL.lval = ^yyDollar[2].lval
		}
	case 120:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:740
		{
			yyVAL.lval = yyDollar[2].lval
		}
	case 121:
		yyDollar = yyS[yypt-0 : yypt+1]
		//line a.y:745
		{
			yyVAL.lval = 0
		}
	case 122:
		yyDollar = yyS[yypt-2 : yypt+1]
		//line a.y:749
		{
			yyVAL.lval = yyDollar[2].lval
		}
	case 124:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:756
		{
			yyVAL.lval = yyDollar[1].lval + yyDollar[3].lval
		}
	case 125:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:760
		{
			yyVAL.lval = yyDollar[1].lval - yyDollar[3].lval
		}
	case 126:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:764
		{
			yyVAL.lval = yyDollar[1].lval * yyDollar[3].lval
		}
	case 127:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:768
		{
			yyVAL.lval = yyDollar[1].lval / yyDollar[3].lval
		}
	case 128:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:772
		{
			yyVAL.lval = yyDollar[1].lval % yyDollar[3].lval
		}
	case 129:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:776
		{
			yyVAL.lval = yyDollar[1].lval << uint(yyDollar[4].lval)
		}
	case 130:
		yyDollar = yyS[yypt-4 : yypt+1]
		//line a.y:780
		{
			yyVAL.lval = yyDollar[1].lval >> uint(yyDollar[4].lval)
		}
	case 131:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:784
		{
			yyVAL.lval = yyDollar[1].lval & yyDollar[3].lval
		}
	case 132:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:788
		{
			yyVAL.lval = yyDollar[1].lval ^ yyDollar[3].lval
		}
	case 133:
		yyDollar = yyS[yypt-3 : yypt+1]
		//line a.y:792
		{
			yyVAL.lval = yyDollar[1].lval | yyDollar[3].lval
		}
	}
	goto yystack /* stack new state and value */
}
Exemple #15
0
func dumptypestructs() {
	// copy types from externdcl list to signatlist
	for _, n := range externdcl {
		if n.Op != OTYPE {
			continue
		}
		signatlist = append(signatlist, n)
	}

	// Process signatlist.  This can't use range, as entries are
	// added to the list while it is being processed.
	for i := 0; i < len(signatlist); i++ {
		n := signatlist[i]
		if n.Op != OTYPE {
			continue
		}
		t := n.Type
		dtypesym(t)
		if t.Sym != nil {
			dtypesym(ptrto(t))
		}
	}

	// process itabs
	for _, i := range itabs {
		// dump empty itab symbol into i.sym
		// type itab struct {
		//   inter  *interfacetype
		//   _type  *_type
		//   link   *itab
		//   bad    int32
		//   unused int32
		//   fun    [1]uintptr // variable sized
		// }
		o := dsymptr(i.sym, 0, dtypesym(i.itype), 0)
		o = dsymptr(i.sym, o, dtypesym(i.t), 0)
		o += Widthptr + 8                      // skip link/bad/unused fields
		o += len(imethods(i.itype)) * Widthptr // skip fun method pointers
		// at runtime the itab will contain pointers to types, other itabs and
		// method functions. None are allocated on heap, so we can use obj.NOPTR.
		ggloblsym(i.sym, int32(o), int16(obj.DUPOK|obj.NOPTR|obj.LOCAL))

		ilink := Pkglookup(i.t.tconv(FmtLeft)+","+i.itype.tconv(FmtLeft), itablinkpkg)
		dsymptr(ilink, 0, i.sym, 0)
		ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA|obj.LOCAL))
	}

	// process ptabs
	if localpkg.Name == "main" && len(ptabs) > 0 {
		ot := 0
		s := obj.Linklookup(Ctxt, "go.plugin.tabs", 0)
		for _, p := range ptabs {
			// Dump ptab symbol into go.pluginsym package.
			//
			// type ptab struct {
			//	name nameOff
			//	typ  typeOff // pointer to symbol
			// }
			nsym := dname(p.s.Name, "", nil, true)
			ot = dsymptrOffLSym(s, ot, nsym, 0)
			ot = dsymptrOffLSym(s, ot, Linksym(dtypesym(p.t)), 0)
		}
		ggloblLSym(s, int32(ot), int16(obj.RODATA))

		ot = 0
		s = obj.Linklookup(Ctxt, "go.plugin.exports", 0)
		for _, p := range ptabs {
			ot = dsymptrLSym(s, ot, Linksym(p.s), 0)
		}
		ggloblLSym(s, int32(ot), int16(obj.RODATA))
	}

	// generate import strings for imported packages
	if forceObjFileStability {
		// Sorting the packages is not necessary but to compare binaries created
		// using textual and binary format we sort by path to reduce differences.
		sort.Sort(pkgByPath(pkgs))
	}
	for _, p := range pkgs {
		if p.Direct {
			dimportpath(p)
		}
	}

	// do basic types if compiling package runtime.
	// they have to be in at least one package,
	// and runtime is always loaded implicitly,
	// so this is as good as any.
	// another possible choice would be package main,
	// but using runtime means fewer copies in .6 files.
	if myimportpath == "runtime" {
		for i := EType(1); i <= TBOOL; i++ {
			dtypesym(ptrto(Types[i]))
		}
		dtypesym(ptrto(Types[TSTRING]))
		dtypesym(ptrto(Types[TUNSAFEPTR]))

		// emit type structs for error and func(error) string.
		// The latter is the type of an auto-generated wrapper.
		dtypesym(ptrto(errortype))

		dtypesym(functype(nil, []*Node{nod(ODCLFIELD, nil, typenod(errortype))}, []*Node{nod(ODCLFIELD, nil, typenod(Types[TSTRING]))}))

		// add paths for runtime and main, which 6l imports implicitly.
		dimportpath(Runtimepkg)

		if flag_race {
			dimportpath(racepkg)
		}
		if flag_msan {
			dimportpath(msanpkg)
		}
		dimportpath(mkpkg("main"))
	}
}
Exemple #16
0
func preprocess(ctxt *obj.Link, cursym *obj.LSym) {
	if ctxt.Headtype == obj.Hplan9 && ctxt.Plan9privates == nil {
		ctxt.Plan9privates = obj.Linklookup(ctxt, "_privates", 0)
	}

	ctxt.Cursym = cursym

	if cursym.Text == nil || cursym.Text.Link == nil {
		return
	}

	p := cursym.Text
	autoffset := int32(p.To.Offset)
	if autoffset < 0 {
		autoffset = 0
	}

	var bpsize int
	if p.Mode == 64 && obj.Framepointer_enabled != 0 && autoffset > 0 {
		// Make room for to save a base pointer. If autoffset == 0,
		// this might do something special like a tail jump to
		// another function, so in that case we omit this.
		bpsize = ctxt.Arch.Ptrsize

		autoffset += int32(bpsize)
		p.To.Offset += int64(bpsize)
	} else {
		bpsize = 0
	}

	textarg := int64(p.To.Val.(int32))
	cursym.Args = int32(textarg)
	cursym.Locals = int32(p.To.Offset)

	// TODO(rsc): Remove.
	if p.Mode == 32 && cursym.Locals < 0 {
		cursym.Locals = 0
	}

	// TODO(rsc): Remove 'p.Mode == 64 &&'.
	if p.Mode == 64 && autoffset < obj.StackSmall && p.From3Offset()&obj.NOSPLIT == 0 {
		for q := p; q != nil; q = q.Link {
			if q.As == obj.ACALL {
				goto noleaf
			}
			if (q.As == obj.ADUFFCOPY || q.As == obj.ADUFFZERO) && autoffset >= obj.StackSmall-8 {
				goto noleaf
			}
		}

		p.From3.Offset |= obj.NOSPLIT
	noleaf:
	}

	if p.From3Offset()&obj.NOSPLIT == 0 || p.From3Offset()&obj.WRAPPER != 0 {
		p = obj.Appendp(ctxt, p)
		p = load_g_cx(ctxt, p) // load g into CX
	}

	if cursym.Text.From3Offset()&obj.NOSPLIT == 0 {
		p = stacksplit(ctxt, p, autoffset, int32(textarg)) // emit split check
	}

	if autoffset != 0 {
		if autoffset%int32(ctxt.Arch.Regsize) != 0 {
			ctxt.Diag("unaligned stack size %d", autoffset)
		}
		p = obj.Appendp(ctxt, p)
		p.As = AADJSP
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(autoffset)
		p.Spadj = autoffset
	} else {
		// zero-byte stack adjustment.
		// Insert a fake non-zero adjustment so that stkcheck can
		// recognize the end of the stack-splitting prolog.
		p = obj.Appendp(ctxt, p)

		p.As = obj.ANOP
		p.Spadj = int32(-ctxt.Arch.Ptrsize)
		p = obj.Appendp(ctxt, p)
		p.As = obj.ANOP
		p.Spadj = int32(ctxt.Arch.Ptrsize)
	}

	deltasp := autoffset

	if bpsize > 0 {
		// Save caller's BP
		p = obj.Appendp(ctxt, p)

		p.As = AMOVQ
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_BP
		p.To.Type = obj.TYPE_MEM
		p.To.Reg = REG_SP
		p.To.Scale = 1
		p.To.Offset = int64(autoffset) - int64(bpsize)

		// Move current frame to BP
		p = obj.Appendp(ctxt, p)

		p.As = ALEAQ
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = REG_SP
		p.From.Scale = 1
		p.From.Offset = int64(autoffset) - int64(bpsize)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_BP
	}

	if cursym.Text.From3Offset()&obj.WRAPPER != 0 {
		// if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame
		//
		//	MOVQ g_panic(CX), BX
		//	TESTQ BX, BX
		//	JEQ end
		//	LEAQ (autoffset+8)(SP), DI
		//	CMPQ panic_argp(BX), DI
		//	JNE end
		//	MOVQ SP, panic_argp(BX)
		// end:
		//	NOP
		//
		// The NOP is needed to give the jumps somewhere to land.
		// It is a liblink NOP, not an x86 NOP: it encodes to 0 instruction bytes.

		p = obj.Appendp(ctxt, p)

		p.As = AMOVQ
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = REG_CX
		p.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_BX
		if ctxt.Headtype == obj.Hnacl && p.Mode == 64 {
			p.As = AMOVL
			p.From.Type = obj.TYPE_MEM
			p.From.Reg = REG_R15
			p.From.Scale = 1
			p.From.Index = REG_CX
		}
		if p.Mode == 32 {
			p.As = AMOVL
		}

		p = obj.Appendp(ctxt, p)
		p.As = ATESTQ
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_BX
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_BX
		if ctxt.Headtype == obj.Hnacl || p.Mode == 32 {
			p.As = ATESTL
		}

		p = obj.Appendp(ctxt, p)
		p.As = AJEQ
		p.To.Type = obj.TYPE_BRANCH
		p1 := p

		p = obj.Appendp(ctxt, p)
		p.As = ALEAQ
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = REG_SP
		p.From.Offset = int64(autoffset) + int64(ctxt.Arch.Regsize)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_DI
		if ctxt.Headtype == obj.Hnacl || p.Mode == 32 {
			p.As = ALEAL
		}

		p = obj.Appendp(ctxt, p)
		p.As = ACMPQ
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = REG_BX
		p.From.Offset = 0 // Panic.argp
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_DI
		if ctxt.Headtype == obj.Hnacl && p.Mode == 64 {
			p.As = ACMPL
			p.From.Type = obj.TYPE_MEM
			p.From.Reg = REG_R15
			p.From.Scale = 1
			p.From.Index = REG_BX
		}
		if p.Mode == 32 {
			p.As = ACMPL
		}

		p = obj.Appendp(ctxt, p)
		p.As = AJNE
		p.To.Type = obj.TYPE_BRANCH
		p2 := p

		p = obj.Appendp(ctxt, p)
		p.As = AMOVQ
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_SP
		p.To.Type = obj.TYPE_MEM
		p.To.Reg = REG_BX
		p.To.Offset = 0 // Panic.argp
		if ctxt.Headtype == obj.Hnacl && p.Mode == 64 {
			p.As = AMOVL
			p.To.Type = obj.TYPE_MEM
			p.To.Reg = REG_R15
			p.To.Scale = 1
			p.To.Index = REG_BX
		}
		if p.Mode == 32 {
			p.As = AMOVL
		}

		p = obj.Appendp(ctxt, p)
		p.As = obj.ANOP
		p1.Pcond = p
		p2.Pcond = p
	}

	var a int
	var pcsize int
	for ; p != nil; p = p.Link {
		pcsize = int(p.Mode) / 8
		a = int(p.From.Name)
		if a == obj.NAME_AUTO {
			p.From.Offset += int64(deltasp) - int64(bpsize)
		}
		if a == obj.NAME_PARAM {
			p.From.Offset += int64(deltasp) + int64(pcsize)
		}
		if p.From3 != nil {
			a = int(p.From3.Name)
			if a == obj.NAME_AUTO {
				p.From3.Offset += int64(deltasp) - int64(bpsize)
			}
			if a == obj.NAME_PARAM {
				p.From3.Offset += int64(deltasp) + int64(pcsize)
			}
		}
		a = int(p.To.Name)
		if a == obj.NAME_AUTO {
			p.To.Offset += int64(deltasp) - int64(bpsize)
		}
		if a == obj.NAME_PARAM {
			p.To.Offset += int64(deltasp) + int64(pcsize)
		}

		switch p.As {
		default:
			continue

		case APUSHL, APUSHFL:
			deltasp += 4
			p.Spadj = 4
			continue

		case APUSHQ, APUSHFQ:
			deltasp += 8
			p.Spadj = 8
			continue

		case APUSHW, APUSHFW:
			deltasp += 2
			p.Spadj = 2
			continue

		case APOPL, APOPFL:
			deltasp -= 4
			p.Spadj = -4
			continue

		case APOPQ, APOPFQ:
			deltasp -= 8
			p.Spadj = -8
			continue

		case APOPW, APOPFW:
			deltasp -= 2
			p.Spadj = -2
			continue

		case obj.ARET:
			break
		}

		if autoffset != deltasp {
			ctxt.Diag("unbalanced PUSH/POP")
		}

		if autoffset != 0 {
			if bpsize > 0 {
				// Restore caller's BP
				p.As = AMOVQ

				p.From.Type = obj.TYPE_MEM
				p.From.Reg = REG_SP
				p.From.Scale = 1
				p.From.Offset = int64(autoffset) - int64(bpsize)
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REG_BP
				p = obj.Appendp(ctxt, p)
			}

			p.As = AADJSP
			p.From.Type = obj.TYPE_CONST
			p.From.Offset = int64(-autoffset)
			p.Spadj = -autoffset
			p = obj.Appendp(ctxt, p)
			p.As = obj.ARET

			// If there are instructions following
			// this ARET, they come from a branch
			// with the same stackframe, so undo
			// the cleanup.
			p.Spadj = +autoffset
		}

		if p.To.Sym != nil { // retjmp
			p.As = obj.AJMP
		}
	}
}

func indir_cx(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) {
	if ctxt.Headtype == obj.Hnacl && p.Mode == 64 {
		a.Type = obj.TYPE_MEM
		a.Reg = REG_R15
		a.Index = REG_CX
		a.Scale = 1
		return
	}

	a.Type = obj.TYPE_MEM
	a.Reg = REG_CX
}

// Append code to p to load g into cx.
// Overwrites p with the first instruction (no first appendp).
// Overwriting p is unusual but it lets use this in both the
// prologue (caller must call appendp first) and in the epilogue.
// Returns last new instruction.
func load_g_cx(ctxt *obj.Link, p *obj.Prog) *obj.Prog {
	p.As = AMOVQ
	if ctxt.Arch.Ptrsize == 4 {
		p.As = AMOVL
	}
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = REG_TLS
	p.From.Offset = 0
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_CX

	next := p.Link
	progedit(ctxt, p)
	for p.Link != next {
		p = p.Link
	}

	if p.From.Index == REG_TLS {
		p.From.Scale = 2
	}

	return p
}

// Append code to p to check for stack split.
// Appends to (does not overwrite) p.
// Assumes g is in CX.
// Returns last new instruction.
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32, textarg int32) *obj.Prog {
	cmp := ACMPQ
	lea := ALEAQ
	mov := AMOVQ
	sub := ASUBQ

	if ctxt.Headtype == obj.Hnacl || p.Mode == 32 {
		cmp = ACMPL
		lea = ALEAL
		mov = AMOVL
		sub = ASUBL
	}

	var q1 *obj.Prog
	if framesize <= obj.StackSmall {
		// small stack: SP <= stackguard
		//	CMPQ SP, stackguard
		p = obj.Appendp(ctxt, p)

		p.As = cmp
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_SP
		indir_cx(ctxt, p, &p.To)
		p.To.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0
		if ctxt.Cursym.Cfunc {
			p.To.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1
		}
	} else if framesize <= obj.StackBig {
		// large stack: SP-framesize <= stackguard-StackSmall
		//	LEAQ -xxx(SP), AX
		//	CMPQ AX, stackguard
		p = obj.Appendp(ctxt, p)

		p.As = lea
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = REG_SP
		p.From.Offset = -(int64(framesize) - obj.StackSmall)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_AX

		p = obj.Appendp(ctxt, p)
		p.As = cmp
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_AX
		indir_cx(ctxt, p, &p.To)
		p.To.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0
		if ctxt.Cursym.Cfunc {
			p.To.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1
		}
	} else {
		// Such a large stack we need to protect against wraparound.
		// If SP is close to zero:
		//	SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall)
		// The +StackGuard on both sides is required to keep the left side positive:
		// SP is allowed to be slightly below stackguard. See stack.h.
		//
		// Preemption sets stackguard to StackPreempt, a very large value.
		// That breaks the math above, so we have to check for that explicitly.
		//	MOVQ	stackguard, CX
		//	CMPQ	CX, $StackPreempt
		//	JEQ	label-of-call-to-morestack
		//	LEAQ	StackGuard(SP), AX
		//	SUBQ	CX, AX
		//	CMPQ	AX, $(framesize+(StackGuard-StackSmall))

		p = obj.Appendp(ctxt, p)

		p.As = mov
		indir_cx(ctxt, p, &p.From)
		p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0
		if ctxt.Cursym.Cfunc {
			p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1
		}
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_SI

		p = obj.Appendp(ctxt, p)
		p.As = cmp
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_SI
		p.To.Type = obj.TYPE_CONST
		p.To.Offset = obj.StackPreempt
		if p.Mode == 32 {
			p.To.Offset = int64(uint32(obj.StackPreempt & (1<<32 - 1)))
		}

		p = obj.Appendp(ctxt, p)
		p.As = AJEQ
		p.To.Type = obj.TYPE_BRANCH
		q1 = p

		p = obj.Appendp(ctxt, p)
		p.As = lea
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = REG_SP
		p.From.Offset = obj.StackGuard
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_AX

		p = obj.Appendp(ctxt, p)
		p.As = sub
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_SI
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_AX

		p = obj.Appendp(ctxt, p)
		p.As = cmp
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_AX
		p.To.Type = obj.TYPE_CONST
		p.To.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall)
	}

	// common
	jls := obj.Appendp(ctxt, p)
	jls.As = AJLS
	jls.To.Type = obj.TYPE_BRANCH

	var last *obj.Prog
	for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link {
	}

	spfix := obj.Appendp(ctxt, last)
	spfix.As = obj.ANOP
	spfix.Spadj = -framesize

	call := obj.Appendp(ctxt, spfix)
	call.Lineno = ctxt.Cursym.Text.Lineno
	call.Mode = ctxt.Cursym.Text.Mode
	call.As = obj.ACALL
	call.To.Type = obj.TYPE_BRANCH
	morestack := "runtime.morestack"
	switch {
	case ctxt.Cursym.Cfunc:
		morestack = "runtime.morestackc"
	case ctxt.Cursym.Text.From3Offset()&obj.NEEDCTXT == 0:
		morestack = "runtime.morestack_noctxt"
	}
	call.To.Sym = obj.Linklookup(ctxt, morestack, 0)

	jmp := obj.Appendp(ctxt, call)
	jmp.As = obj.AJMP
	jmp.To.Type = obj.TYPE_BRANCH
	jmp.Pcond = ctxt.Cursym.Text.Link
	jmp.Spadj = +framesize

	jls.Pcond = call
	if q1 != nil {
		q1.Pcond = call
	}

	return jls
}

func follow(ctxt *obj.Link, s *obj.LSym) {
	ctxt.Cursym = s

	firstp := ctxt.NewProg()
	lastp := firstp
	xfol(ctxt, s.Text, &lastp)
	lastp.Link = nil
	s.Text = firstp.Link
}

func nofollow(a obj.As) bool {
	switch a {
	case obj.AJMP,
		obj.ARET,
		AIRETL,
		AIRETQ,
		AIRETW,
		ARETFL,
		ARETFQ,
		ARETFW,
		obj.AUNDEF:
		return true
	}

	return false
}

func pushpop(a obj.As) bool {
	switch a {
	case APUSHL,
		APUSHFL,
		APUSHQ,
		APUSHFQ,
		APUSHW,
		APUSHFW,
		APOPL,
		APOPFL,
		APOPQ,
		APOPFQ,
		APOPW,
		APOPFW:
		return true
	}

	return false
}

func relinv(a obj.As) obj.As {
	switch a {
	case AJEQ:
		return AJNE
	case AJNE:
		return AJEQ
	case AJLE:
		return AJGT
	case AJLS:
		return AJHI
	case AJLT:
		return AJGE
	case AJMI:
		return AJPL
	case AJGE:
		return AJLT
	case AJPL:
		return AJMI
	case AJGT:
		return AJLE
	case AJHI:
		return AJLS
	case AJCS:
		return AJCC
	case AJCC:
		return AJCS
	case AJPS:
		return AJPC
	case AJPC:
		return AJPS
	case AJOS:
		return AJOC
	case AJOC:
		return AJOS
	}

	log.Fatalf("unknown relation: %s", obj.Aconv(a))
	return 0
}

func xfol(ctxt *obj.Link, p *obj.Prog, last **obj.Prog) {
	var q *obj.Prog
	var i int
	var a obj.As

loop:
	if p == nil {
		return
	}
	if p.As == obj.AJMP {
		q = p.Pcond
		if q != nil && q.As != obj.ATEXT {
			/* mark instruction as done and continue layout at target of jump */
			p.Mark |= DONE

			p = q
			if p.Mark&DONE == 0 {
				goto loop
			}
		}
	}

	if p.Mark&DONE != 0 {
		/*
		 * p goes here, but already used it elsewhere.
		 * copy up to 4 instructions or else branch to other copy.
		 */
		i = 0
		q = p
		for ; i < 4; i, q = i+1, q.Link {
			if q == nil {
				break
			}
			if q == *last {
				break
			}
			a = q.As
			if a == obj.ANOP {
				i--
				continue
			}

			if nofollow(a) || pushpop(a) {
				break // NOTE(rsc): arm does goto copy
			}
			if q.Pcond == nil || q.Pcond.Mark&DONE != 0 {
				continue
			}
			if a == obj.ACALL || a == ALOOP {
				continue
			}
			for {
				if p.As == obj.ANOP {
					p = p.Link
					continue
				}

				q = obj.Copyp(ctxt, p)
				p = p.Link
				q.Mark |= DONE
				(*last).Link = q
				*last = q
				if q.As != a || q.Pcond == nil || q.Pcond.Mark&DONE != 0 {
					continue
				}

				q.As = relinv(q.As)
				p = q.Pcond
				q.Pcond = q.Link
				q.Link = p
				xfol(ctxt, q.Link, last)
				p = q.Link
				if p.Mark&DONE != 0 {
					return
				}
				goto loop
				/* */
			}
		}
		q = ctxt.NewProg()
		q.As = obj.AJMP
		q.Lineno = p.Lineno
		q.To.Type = obj.TYPE_BRANCH
		q.To.Offset = p.Pc
		q.Pcond = p
		p = q
	}

	/* emit p */
	p.Mark |= DONE

	(*last).Link = p
	*last = p
	a = p.As

	/* continue loop with what comes after p */
	if nofollow(a) {
		return
	}
	if p.Pcond != nil && a != obj.ACALL {
		/*
		 * some kind of conditional branch.
		 * recurse to follow one path.
		 * continue loop on the other.
		 */
		q = obj.Brchain(ctxt, p.Pcond)
		if q != nil {
			p.Pcond = q
		}
		q = obj.Brchain(ctxt, p.Link)
		if q != nil {
			p.Link = q
		}
		if p.From.Type == obj.TYPE_CONST {
			if p.From.Offset == 1 {
				/*
				 * expect conditional jump to be taken.
				 * rewrite so that's the fall-through case.
				 */
				p.As = relinv(a)

				q = p.Link
				p.Link = p.Pcond
				p.Pcond = q
			}
		} else {
			q = p.Link
			if q.Mark&DONE != 0 {
				if a != ALOOP {
					p.As = relinv(a)
					p.Link = p.Pcond
					p.Pcond = q
				}
			}
		}

		xfol(ctxt, p.Link, last)
		if p.Pcond.Mark&DONE != 0 {
			return
		}
		p = p.Pcond
		goto loop
	}

	p = p.Link
	goto loop
}

var unaryDst = map[obj.As]bool{
	ABSWAPL:    true,
	ABSWAPQ:    true,
	ACMPXCHG8B: true,
	ADECB:      true,
	ADECL:      true,
	ADECQ:      true,
	ADECW:      true,
	AINCB:      true,
	AINCL:      true,
	AINCQ:      true,
	AINCW:      true,
	ANEGB:      true,
	ANEGL:      true,
	ANEGQ:      true,
	ANEGW:      true,
	ANOTB:      true,
	ANOTL:      true,
	ANOTQ:      true,
	ANOTW:      true,
	APOPL:      true,
	APOPQ:      true,
	APOPW:      true,
	ASETCC:     true,
	ASETCS:     true,
	ASETEQ:     true,
	ASETGE:     true,
	ASETGT:     true,
	ASETHI:     true,
	ASETLE:     true,
	ASETLS:     true,
	ASETLT:     true,
	ASETMI:     true,
	ASETNE:     true,
	ASETOC:     true,
	ASETOS:     true,
	ASETPC:     true,
	ASETPL:     true,
	ASETPS:     true,
	AFFREE:     true,
	AFLDENV:    true,
	AFSAVE:     true,
	AFSTCW:     true,
	AFSTENV:    true,
	AFSTSW:     true,
	AFXSAVE:    true,
	AFXSAVE64:  true,
	ASTMXCSR:   true,
}

var Linkamd64 = obj.LinkArch{
	ByteOrder:  binary.LittleEndian,
	Name:       "amd64",
	Thechar:    '6',
	Preprocess: preprocess,
	Assemble:   span6,
	Follow:     follow,
	Progedit:   progedit,
	UnaryDst:   unaryDst,
	Minlc:      1,
	Ptrsize:    8,
	Regsize:    8,
}

var Linkamd64p32 = obj.LinkArch{
	ByteOrder:  binary.LittleEndian,
	Name:       "amd64p32",
	Thechar:    '6',
	Preprocess: preprocess,
	Assemble:   span6,
	Follow:     follow,
	Progedit:   progedit,
	UnaryDst:   unaryDst,
	Minlc:      1,
	Ptrsize:    4,
	Regsize:    8,
}

var Link386 = obj.LinkArch{
	ByteOrder:  binary.LittleEndian,
	Name:       "386",
	Thechar:    '8',
	Preprocess: preprocess,
	Assemble:   span6,
	Follow:     follow,
	Progedit:   progedit,
	UnaryDst:   unaryDst,
	Minlc:      1,
	Ptrsize:    4,
	Regsize:    4,
}
Exemple #17
0
func progedit(ctxt *obj.Link, p *obj.Prog) {
	// Maintain information about code generation mode.
	if ctxt.Mode == 0 {
		ctxt.Mode = ctxt.Arch.Regsize * 8
	}
	p.Mode = int8(ctxt.Mode)

	switch p.As {
	case AMODE:
		if p.From.Type == obj.TYPE_CONST || (p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_NONE) {
			switch int(p.From.Offset) {
			case 16, 32, 64:
				ctxt.Mode = int(p.From.Offset)
			}
		}
		obj.Nopout(p)
	}

	// Thread-local storage references use the TLS pseudo-register.
	// As a register, TLS refers to the thread-local storage base, and it
	// can only be loaded into another register:
	//
	//         MOVQ TLS, AX
	//
	// An offset from the thread-local storage base is written off(reg)(TLS*1).
	// Semantically it is off(reg), but the (TLS*1) annotation marks this as
	// indexing from the loaded TLS base. This emits a relocation so that
	// if the linker needs to adjust the offset, it can. For example:
	//
	//         MOVQ TLS, AX
	//         MOVQ 0(AX)(TLS*1), CX // load g into CX
	//
	// On systems that support direct access to the TLS memory, this
	// pair of instructions can be reduced to a direct TLS memory reference:
	//
	//         MOVQ 0(TLS), CX // load g into CX
	//
	// The 2-instruction and 1-instruction forms correspond to the two code
	// sequences for loading a TLS variable in the local exec model given in "ELF
	// Handling For Thread-Local Storage".
	//
	// We apply this rewrite on systems that support the 1-instruction form.
	// The decision is made using only the operating system and the -shared flag,
	// not the link mode. If some link modes on a particular operating system
	// require the 2-instruction form, then all builds for that operating system
	// will use the 2-instruction form, so that the link mode decision can be
	// delayed to link time.
	//
	// In this way, all supported systems use identical instructions to
	// access TLS, and they are rewritten appropriately first here in
	// liblink and then finally using relocations in the linker.
	//
	// When -shared is passed, we leave the code in the 2-instruction form but
	// assemble (and relocate) them in different ways to generate the initial
	// exec code sequence. It's a bit of a fluke that this is possible without
	// rewriting the instructions more comprehensively, and it only does because
	// we only support a single TLS variable (g).

	if CanUse1InsnTLS(ctxt) {
		// Reduce 2-instruction sequence to 1-instruction sequence.
		// Sequences like
		//	MOVQ TLS, BX
		//	... off(BX)(TLS*1) ...
		// become
		//	NOP
		//	... off(TLS) ...
		//
		// TODO(rsc): Remove the Hsolaris special case. It exists only to
		// guarantee we are producing byte-identical binaries as before this code.
		// But it should be unnecessary.
		if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != obj.Hsolaris {
			obj.Nopout(p)
		}
		if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 {
			p.From.Reg = REG_TLS
			p.From.Scale = 0
			p.From.Index = REG_NONE
		}

		if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 {
			p.To.Reg = REG_TLS
			p.To.Scale = 0
			p.To.Index = REG_NONE
		}
	} else {
		// load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it
		// as the 2-instruction sequence if necessary.
		//	MOVQ 0(TLS), BX
		// becomes
		//	MOVQ TLS, BX
		//	MOVQ 0(BX)(TLS*1), BX
		if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 {
			q := obj.Appendp(ctxt, p)
			q.As = p.As
			q.From = p.From
			q.From.Type = obj.TYPE_MEM
			q.From.Reg = p.To.Reg
			q.From.Index = REG_TLS
			q.From.Scale = 2 // TODO: use 1
			q.To = p.To
			p.From.Type = obj.TYPE_REG
			p.From.Reg = REG_TLS
			p.From.Index = REG_NONE
			p.From.Offset = 0
		}
	}

	// TODO: Remove.
	if ctxt.Headtype == obj.Hwindows && p.Mode == 64 || ctxt.Headtype == obj.Hplan9 {
		if p.From.Scale == 1 && p.From.Index == REG_TLS {
			p.From.Scale = 2
		}
		if p.To.Scale == 1 && p.To.Index == REG_TLS {
			p.To.Scale = 2
		}
	}

	// Rewrite 0 to $0 in 3rd argument to CMPPS etc.
	// That's what the tables expect.
	switch p.As {
	case ACMPPD, ACMPPS, ACMPSD, ACMPSS:
		if p.To.Type == obj.TYPE_MEM && p.To.Name == obj.NAME_NONE && p.To.Reg == REG_NONE && p.To.Index == REG_NONE && p.To.Sym == nil {
			p.To.Type = obj.TYPE_CONST
		}
	}

	// Rewrite CALL/JMP/RET to symbol as TYPE_BRANCH.
	switch p.As {
	case obj.ACALL, obj.AJMP, obj.ARET:
		if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil {
			p.To.Type = obj.TYPE_BRANCH
		}
	}

	// Rewrite MOVL/MOVQ $XXX(FP/SP) as LEAL/LEAQ.
	if p.From.Type == obj.TYPE_ADDR && (ctxt.Arch.Thechar == '6' || p.From.Name != obj.NAME_EXTERN && p.From.Name != obj.NAME_STATIC) {
		switch p.As {
		case AMOVL:
			p.As = ALEAL
			p.From.Type = obj.TYPE_MEM
		case AMOVQ:
			p.As = ALEAQ
			p.From.Type = obj.TYPE_MEM
		}
	}

	if ctxt.Headtype == obj.Hnacl && p.Mode == 64 {
		if p.From3 != nil {
			nacladdr(ctxt, p, p.From3)
		}
		nacladdr(ctxt, p, &p.From)
		nacladdr(ctxt, p, &p.To)
	}

	// Rewrite float constants to values stored in memory.
	switch p.As {
	// Convert AMOVSS $(0), Xx to AXORPS Xx, Xx
	case AMOVSS:
		if p.From.Type == obj.TYPE_FCONST {
			//  f == 0 can't be used here due to -0, so use Float64bits
			if f := p.From.Val.(float64); math.Float64bits(f) == 0 {
				if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 {
					p.As = AXORPS
					p.From = p.To
					break
				}
			}
		}
		fallthrough

	case AFMOVF,
		AFADDF,
		AFSUBF,
		AFSUBRF,
		AFMULF,
		AFDIVF,
		AFDIVRF,
		AFCOMF,
		AFCOMFP,
		AADDSS,
		ASUBSS,
		AMULSS,
		ADIVSS,
		ACOMISS,
		AUCOMISS:
		if p.From.Type == obj.TYPE_FCONST {
			f32 := float32(p.From.Val.(float64))
			i32 := math.Float32bits(f32)
			literal := fmt.Sprintf("$f32.%08x", i32)
			s := obj.Linklookup(ctxt, literal, 0)
			p.From.Type = obj.TYPE_MEM
			p.From.Name = obj.NAME_EXTERN
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Offset = 0
		}

	case AMOVSD:
		// Convert AMOVSD $(0), Xx to AXORPS Xx, Xx
		if p.From.Type == obj.TYPE_FCONST {
			//  f == 0 can't be used here due to -0, so use Float64bits
			if f := p.From.Val.(float64); math.Float64bits(f) == 0 {
				if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 {
					p.As = AXORPS
					p.From = p.To
					break
				}
			}
		}
		fallthrough

	case AFMOVD,
		AFADDD,
		AFSUBD,
		AFSUBRD,
		AFMULD,
		AFDIVD,
		AFDIVRD,
		AFCOMD,
		AFCOMDP,
		AADDSD,
		ASUBSD,
		AMULSD,
		ADIVSD,
		ACOMISD,
		AUCOMISD:
		if p.From.Type == obj.TYPE_FCONST {
			i64 := math.Float64bits(p.From.Val.(float64))
			literal := fmt.Sprintf("$f64.%016x", i64)
			s := obj.Linklookup(ctxt, literal, 0)
			p.From.Type = obj.TYPE_MEM
			p.From.Name = obj.NAME_EXTERN
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Offset = 0
		}
	}

	if ctxt.Flag_dynlink {
		rewriteToUseGot(ctxt, p)
	}

	if ctxt.Flag_shared != 0 && p.Mode == 32 {
		rewriteToPcrel(ctxt, p)
	}
}
Exemple #18
0
// Rewrite p, if necessary, to access global data via the global offset table.
func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog) {
	var add, lea, mov obj.As
	var reg int16
	if p.Mode == 64 {
		add = AADDQ
		lea = ALEAQ
		mov = AMOVQ
		reg = REG_R15
	} else {
		add = AADDL
		lea = ALEAL
		mov = AMOVL
		reg = REG_CX
	}

	if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO {
		//     ADUFFxxx $offset
		// becomes
		//     $MOV runtime.duffxxx@GOT, $reg
		//     $ADD $offset, $reg
		//     CALL $reg
		var sym *obj.LSym
		if p.As == obj.ADUFFZERO {
			sym = obj.Linklookup(ctxt, "runtime.duffzero", 0)
		} else {
			sym = obj.Linklookup(ctxt, "runtime.duffcopy", 0)
		}
		offset := p.To.Offset
		p.As = mov
		p.From.Type = obj.TYPE_MEM
		p.From.Name = obj.NAME_GOTREF
		p.From.Sym = sym
		p.To.Type = obj.TYPE_REG
		p.To.Reg = reg
		p.To.Offset = 0
		p.To.Sym = nil
		p1 := obj.Appendp(ctxt, p)
		p1.As = add
		p1.From.Type = obj.TYPE_CONST
		p1.From.Offset = offset
		p1.To.Type = obj.TYPE_REG
		p1.To.Reg = reg
		p2 := obj.Appendp(ctxt, p1)
		p2.As = obj.ACALL
		p2.To.Type = obj.TYPE_REG
		p2.To.Reg = reg
	}

	// We only care about global data: NAME_EXTERN means a global
	// symbol in the Go sense, and p.Sym.Local is true for a few
	// internally defined symbols.
	if p.As == lea && p.From.Type == obj.TYPE_MEM && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		// $LEA sym, Rx becomes $MOV $sym, Rx which will be rewritten below
		p.As = mov
		p.From.Type = obj.TYPE_ADDR
	}
	if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		// $MOV $sym, Rx becomes $MOV sym@GOT, Rx
		// $MOV $sym+<off>, Rx becomes $MOV sym@GOT, Rx; $LEA <off>(Rx), Rx
		// On 386 only, more complicated things like PUSHL $sym become $MOV sym@GOT, CX; PUSHL CX
		cmplxdest := false
		pAs := p.As
		var dest obj.Addr
		if p.To.Type != obj.TYPE_REG || pAs != mov {
			if p.Mode == 64 {
				ctxt.Diag("do not know how to handle LEA-type insn to non-register in %v with -dynlink", p)
			}
			cmplxdest = true
			dest = p.To
			p.As = mov
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REG_CX
			p.To.Sym = nil
			p.To.Name = obj.NAME_NONE
		}
		p.From.Type = obj.TYPE_MEM
		p.From.Name = obj.NAME_GOTREF
		q := p
		if p.From.Offset != 0 {
			q = obj.Appendp(ctxt, p)
			q.As = lea
			q.From.Type = obj.TYPE_MEM
			q.From.Reg = p.To.Reg
			q.From.Offset = p.From.Offset
			q.To = p.To
			p.From.Offset = 0
		}
		if cmplxdest {
			q = obj.Appendp(ctxt, q)
			q.As = pAs
			q.To = dest
			q.From.Type = obj.TYPE_REG
			q.From.Reg = REG_CX
		}
	}
	if p.From3 != nil && p.From3.Name == obj.NAME_EXTERN {
		ctxt.Diag("don't know how to handle %v with -dynlink", p)
	}
	var source *obj.Addr
	// MOVx sym, Ry becomes $MOV sym@GOT, R15; MOVx (R15), Ry
	// MOVx Ry, sym becomes $MOV sym@GOT, R15; MOVx Ry, (R15)
	// An addition may be inserted between the two MOVs if there is an offset.
	if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local {
			ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p)
		}
		source = &p.From
	} else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local {
		source = &p.To
	} else {
		return
	}
	if p.As == obj.ACALL {
		// When dynlinking on 386, almost any call might end up being a call
		// to a PLT, so make sure the GOT pointer is loaded into BX.
		// RegTo2 is set on the replacement call insn to stop it being
		// processed when it is in turn passed to progedit.
		if p.Mode == 64 || (p.To.Sym != nil && p.To.Sym.Local) || p.RegTo2 != 0 {
			return
		}
		p1 := obj.Appendp(ctxt, p)
		p2 := obj.Appendp(ctxt, p1)

		p1.As = ALEAL
		p1.From.Type = obj.TYPE_MEM
		p1.From.Name = obj.NAME_STATIC
		p1.From.Sym = obj.Linklookup(ctxt, "_GLOBAL_OFFSET_TABLE_", 0)
		p1.To.Type = obj.TYPE_REG
		p1.To.Reg = REG_BX

		p2.As = p.As
		p2.Scond = p.Scond
		p2.From = p.From
		p2.From3 = p.From3
		p2.Reg = p.Reg
		p2.To = p.To
		// p.To.Type was set to TYPE_BRANCH above, but that makes checkaddr
		// in ../pass.go complain, so set it back to TYPE_MEM here, until p2
		// itself gets passed to progedit.
		p2.To.Type = obj.TYPE_MEM
		p2.RegTo2 = 1

		obj.Nopout(p)
		return

	}
	if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ARET || p.As == obj.AJMP {
		return
	}
	if source.Type != obj.TYPE_MEM {
		ctxt.Diag("don't know how to handle %v with -dynlink", p)
	}
	p1 := obj.Appendp(ctxt, p)
	p2 := obj.Appendp(ctxt, p1)

	p1.As = mov
	p1.From.Type = obj.TYPE_MEM
	p1.From.Sym = source.Sym
	p1.From.Name = obj.NAME_GOTREF
	p1.To.Type = obj.TYPE_REG
	p1.To.Reg = reg

	p2.As = p.As
	p2.From = p.From
	p2.To = p.To
	if p.From.Name == obj.NAME_EXTERN {
		p2.From.Reg = reg
		p2.From.Name = obj.NAME_NONE
		p2.From.Sym = nil
	} else if p.To.Name == obj.NAME_EXTERN {
		p2.To.Reg = reg
		p2.To.Name = obj.NAME_NONE
		p2.To.Sym = nil
	} else {
		return
	}
	obj.Nopout(p)
}
Exemple #19
0
Fichier : obj9.go Projet : gmwu/go
/*
// instruction scheduling
	if(debug['Q'] == 0)
		return;

	curtext = nil;
	q = nil;	// p - 1
	q1 = firstp;	// top of block
	o = 0;		// count of instructions
	for(p = firstp; p != nil; p = p1) {
		p1 = p->link;
		o++;
		if(p->mark & NOSCHED){
			if(q1 != p){
				sched(q1, q);
			}
			for(; p != nil; p = p->link){
				if(!(p->mark & NOSCHED))
					break;
				q = p;
			}
			p1 = p;
			q1 = p;
			o = 0;
			continue;
		}
		if(p->mark & (LABEL|SYNC)) {
			if(q1 != p)
				sched(q1, q);
			q1 = p;
			o = 1;
		}
		if(p->mark & (BRANCH|SYNC)) {
			sched(q1, p);
			q1 = p1;
			o = 0;
		}
		if(o >= NSCHED) {
			sched(q1, p);
			q1 = p1;
			o = 0;
		}
		q = p;
	}
*/
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog {
	// MOVD	g_stackguard(g), R3
	p = obj.Appendp(ctxt, p)

	p.As = AMOVD
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = REGG
	p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0
	if ctxt.Cursym.Cfunc != 0 {
		p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1
	}
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R3

	var q *obj.Prog
	if framesize <= obj.StackSmall {
		// small stack: SP < stackguard
		//	CMP	stackguard, SP
		p = obj.Appendp(ctxt, p)

		p.As = ACMPU
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REGSP
	} else if framesize <= obj.StackBig {
		// large stack: SP-framesize < stackguard-StackSmall
		//	ADD $-framesize, SP, R4
		//	CMP stackguard, R4
		p = obj.Appendp(ctxt, p)

		p.As = AADD
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(-framesize)
		p.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R4

		p = obj.Appendp(ctxt, p)
		p.As = ACMPU
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R4
	} else {
		// Such a large stack we need to protect against wraparound.
		// If SP is close to zero:
		//	SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall)
		// The +StackGuard on both sides is required to keep the left side positive:
		// SP is allowed to be slightly below stackguard. See stack.h.
		//
		// Preemption sets stackguard to StackPreempt, a very large value.
		// That breaks the math above, so we have to check for that explicitly.
		//	// stackguard is R3
		//	CMP	R3, $StackPreempt
		//	BEQ	label-of-call-to-morestack
		//	ADD	$StackGuard, SP, R4
		//	SUB	R3, R4
		//	MOVD	$(framesize+(StackGuard-StackSmall)), R31
		//	CMPU	R31, R4
		p = obj.Appendp(ctxt, p)

		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.To.Type = obj.TYPE_CONST
		p.To.Offset = obj.StackPreempt

		p = obj.Appendp(ctxt, p)
		q = p
		p.As = ABEQ
		p.To.Type = obj.TYPE_BRANCH

		p = obj.Appendp(ctxt, p)
		p.As = AADD
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = obj.StackGuard
		p.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R4

		p = obj.Appendp(ctxt, p)
		p.As = ASUB
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R4

		p = obj.Appendp(ctxt, p)
		p.As = AMOVD
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(framesize) + obj.StackGuard - obj.StackSmall
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REGTMP

		p = obj.Appendp(ctxt, p)
		p.As = ACMPU
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REGTMP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R4
	}

	// q1: BLT	done
	p = obj.Appendp(ctxt, p)
	q1 := p

	p.As = ABLT
	p.To.Type = obj.TYPE_BRANCH

	// MOVD	LR, R5
	p = obj.Appendp(ctxt, p)

	p.As = AMOVD
	p.From.Type = obj.TYPE_REG
	p.From.Reg = REG_LR
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R5
	if q != nil {
		q.Pcond = p
	}

	var morestacksym *obj.LSym
	if ctxt.Cursym.Cfunc != 0 {
		morestacksym = obj.Linklookup(ctxt, "runtime.morestackc", 0)
	} else if ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0 {
		morestacksym = obj.Linklookup(ctxt, "runtime.morestack_noctxt", 0)
	} else {
		morestacksym = obj.Linklookup(ctxt, "runtime.morestack", 0)
	}

	if ctxt.Flag_dynlink {
		// Avoid calling morestack via a PLT when dynamically linking.  The
		// PLT stubs generated by the system linker on ppc64le when "std r2,
		// 24(r1)" to save the TOC pointer in their callers stack
		// frame. Unfortunately (and necessarily) morestack is called before
		// the function that calls it sets up its frame and so the PLT ends
		// up smashing the saved TOC pointer for its caller's caller.
		//
		// According to the ABI documentation there is a mechanism to avoid
		// the TOC save that the PLT stub does (put a R_PPC64_TOCSAVE
		// relocation on the nop after the call to morestack) but at the time
		// of writing it is not supported at all by gold and my attempt to
		// use it with ld.bfd caused an internal linker error. So this hack
		// seems preferable.

		// MOVD $runtime.morestack(SB), R12
		p = obj.Appendp(ctxt, p)
		p.As = AMOVD
		p.From.Type = obj.TYPE_MEM
		p.From.Sym = morestacksym
		p.From.Name = obj.NAME_GOTREF
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R12

		// MOVD R12, CTR
		p = obj.Appendp(ctxt, p)
		p.As = AMOVD
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R12
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_CTR

		// BL CTR
		p = obj.Appendp(ctxt, p)
		p.As = obj.ACALL
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R12
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_CTR
	} else {
		// BL	runtime.morestack(SB)
		p = obj.Appendp(ctxt, p)

		p.As = ABL
		p.To.Type = obj.TYPE_BRANCH
		p.To.Sym = morestacksym
	}
	// BR	start
	p = obj.Appendp(ctxt, p)

	p.As = ABR
	p.To.Type = obj.TYPE_BRANCH
	p.Pcond = ctxt.Cursym.Text.Link

	// placeholder for q1's jump target
	p = obj.Appendp(ctxt, p)

	p.As = obj.ANOP // zero-width place holder
	q1.Pcond = p

	return p
}
Exemple #20
0
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog {
	// MOVW			g_stackguard(g), R1
	p = obj.Appendp(ctxt, p)

	p.As = AMOVW
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = REGG
	p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0
	if ctxt.Cursym.Cfunc != 0 {
		p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1
	}
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R1

	if framesize <= obj.StackSmall {
		// small stack: SP < stackguard
		//	CMP	stackguard, SP
		p = obj.Appendp(ctxt, p)

		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REGSP
	} else if framesize <= obj.StackBig {
		// large stack: SP-framesize < stackguard-StackSmall
		//	MOVW $-framesize(SP), R2
		//	CMP stackguard, R2
		p = obj.Appendp(ctxt, p)

		p.As = AMOVW
		p.From.Type = obj.TYPE_ADDR
		p.From.Reg = REGSP
		p.From.Offset = int64(-framesize)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REG_R2
	} else {
		// Such a large stack we need to protect against wraparound
		// if SP is close to zero.
		//	SP-stackguard+StackGuard < framesize + (StackGuard-StackSmall)
		// The +StackGuard on both sides is required to keep the left side positive:
		// SP is allowed to be slightly below stackguard. See stack.h.
		//	CMP $StackPreempt, R1
		//	MOVW.NE $StackGuard(SP), R2
		//	SUB.NE R1, R2
		//	MOVW.NE $(framesize+(StackGuard-StackSmall)), R3
		//	CMP.NE R3, R2
		p = obj.Appendp(ctxt, p)

		p.As = ACMP
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(uint32(obj.StackPreempt & (1<<32 - 1)))
		p.Reg = REG_R1

		p = obj.Appendp(ctxt, p)
		p.As = AMOVW
		p.From.Type = obj.TYPE_ADDR
		p.From.Reg = REGSP
		p.From.Offset = obj.StackGuard
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2
		p.Scond = C_SCOND_NE

		p = obj.Appendp(ctxt, p)
		p.As = ASUB
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2
		p.Scond = C_SCOND_NE

		p = obj.Appendp(ctxt, p)
		p.As = AMOVW
		p.From.Type = obj.TYPE_ADDR
		p.From.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R3
		p.Scond = C_SCOND_NE

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.Reg = REG_R2
		p.Scond = C_SCOND_NE
	}

	// BLS call-to-morestack
	bls := obj.Appendp(ctxt, p)
	bls.As = ABLS
	bls.To.Type = obj.TYPE_BRANCH

	var last *obj.Prog
	for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link {
	}

	// MOVW	LR, R3
	movw := obj.Appendp(ctxt, last)
	movw.As = AMOVW
	movw.From.Type = obj.TYPE_REG
	movw.From.Reg = REGLINK
	movw.To.Type = obj.TYPE_REG
	movw.To.Reg = REG_R3

	bls.Pcond = movw

	// BL runtime.morestack
	call := obj.Appendp(ctxt, movw)
	call.As = obj.ACALL
	call.To.Type = obj.TYPE_BRANCH
	morestack := "runtime.morestack"
	switch {
	case ctxt.Cursym.Cfunc != 0:
		morestack = "runtime.morestackc"
	case ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0:
		morestack = "runtime.morestack_noctxt"
	}
	call.To.Sym = obj.Linklookup(ctxt, morestack, 0)

	// B start
	b := obj.Appendp(ctxt, call)
	b.As = obj.AJMP
	b.To.Type = obj.TYPE_BRANCH
	b.Pcond = ctxt.Cursym.Text.Link

	return bls
}
Exemple #21
0
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog {
	// MOV	g_stackguard(g), R1
	p = obj.Appendp(ctxt, p)

	p.As = AMOVD
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = REGG
	p.From.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0
	if ctxt.Cursym.Cfunc {
		p.From.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1
	}
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R1

	q := (*obj.Prog)(nil)
	if framesize <= obj.StackSmall {
		// small stack: SP < stackguard
		//	MOV	SP, R2
		//	CMP	stackguard, R2
		p = obj.Appendp(ctxt, p)

		p.As = AMOVD
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REG_R2
	} else if framesize <= obj.StackBig {
		// large stack: SP-framesize < stackguard-StackSmall
		//	SUB	$framesize, SP, R2
		//	CMP	stackguard, R2
		p = obj.Appendp(ctxt, p)

		p.As = ASUB
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(framesize)
		p.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REG_R2
	} else {
		// Such a large stack we need to protect against wraparound
		// if SP is close to zero.
		//	SP-stackguard+StackGuard < framesize + (StackGuard-StackSmall)
		// The +StackGuard on both sides is required to keep the left side positive:
		// SP is allowed to be slightly below stackguard. See stack.h.
		//	CMP	$StackPreempt, R1
		//	BEQ	label_of_call_to_morestack
		//	ADD	$StackGuard, SP, R2
		//	SUB	R1, R2
		//	MOV	$(framesize+(StackGuard-StackSmall)), R3
		//	CMP	R3, R2
		p = obj.Appendp(ctxt, p)

		p.As = ACMP
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = obj.StackPreempt
		p.Reg = REG_R1

		p = obj.Appendp(ctxt, p)
		q = p
		p.As = ABEQ
		p.To.Type = obj.TYPE_BRANCH

		p = obj.Appendp(ctxt, p)
		p.As = AADD
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = obj.StackGuard
		p.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = ASUB
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = AMOVD
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R3

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.Reg = REG_R2
	}

	// BLS	do-morestack
	bls := obj.Appendp(ctxt, p)
	bls.As = ABLS
	bls.To.Type = obj.TYPE_BRANCH

	var last *obj.Prog
	for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link {
	}

	spfix := obj.Appendp(ctxt, last)
	spfix.As = obj.ANOP
	spfix.Spadj = -framesize

	// MOV	LR, R3
	movlr := obj.Appendp(ctxt, spfix)
	movlr.As = AMOVD
	movlr.From.Type = obj.TYPE_REG
	movlr.From.Reg = REGLINK
	movlr.To.Type = obj.TYPE_REG
	movlr.To.Reg = REG_R3
	if q != nil {
		q.Pcond = movlr
	}
	bls.Pcond = movlr

	debug := movlr
	if false {
		debug = obj.Appendp(ctxt, debug)
		debug.As = AMOVD
		debug.From.Type = obj.TYPE_CONST
		debug.From.Offset = int64(framesize)
		debug.To.Type = obj.TYPE_REG
		debug.To.Reg = REGTMP
	}

	// BL	runtime.morestack(SB)
	call := obj.Appendp(ctxt, debug)
	call.As = ABL
	call.To.Type = obj.TYPE_BRANCH
	morestack := "runtime.morestack"
	switch {
	case ctxt.Cursym.Cfunc:
		morestack = "runtime.morestackc"
	case ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0:
		morestack = "runtime.morestack_noctxt"
	}
	call.To.Sym = obj.Linklookup(ctxt, morestack, 0)

	// B	start
	jmp := obj.Appendp(ctxt, call)
	jmp.As = AB
	jmp.To.Type = obj.TYPE_BRANCH
	jmp.Pcond = ctxt.Cursym.Text.Link
	jmp.Spadj = +framesize

	// placeholder for bls's jump target
	// p = obj.Appendp(ctxt, p)
	// p.As = obj.ANOP

	return bls
}
Exemple #22
0
Fichier : obj9.go Projet : gmwu/go
// Rewrite p, if necessary, to access global data via the global offset table.
func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog) {
	if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO {
		//     ADUFFxxx $offset
		// becomes
		//     MOVD runtime.duffxxx@GOT, R12
		//     ADD $offset, R12
		//     MOVD R12, CTR
		//     BL (CTR)
		var sym *obj.LSym
		if p.As == obj.ADUFFZERO {
			sym = obj.Linklookup(ctxt, "runtime.duffzero", 0)
		} else {
			sym = obj.Linklookup(ctxt, "runtime.duffcopy", 0)
		}
		offset := p.To.Offset
		p.As = AMOVD
		p.From.Type = obj.TYPE_MEM
		p.From.Name = obj.NAME_GOTREF
		p.From.Sym = sym
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R12
		p.To.Name = obj.NAME_NONE
		p.To.Offset = 0
		p.To.Sym = nil
		p1 := obj.Appendp(ctxt, p)
		p1.As = AADD
		p1.From.Type = obj.TYPE_CONST
		p1.From.Offset = offset
		p1.To.Type = obj.TYPE_REG
		p1.To.Reg = REG_R12
		p2 := obj.Appendp(ctxt, p1)
		p2.As = AMOVD
		p2.From.Type = obj.TYPE_REG
		p2.From.Reg = REG_R12
		p2.To.Type = obj.TYPE_REG
		p2.To.Reg = REG_CTR
		p3 := obj.Appendp(ctxt, p2)
		p3.As = obj.ACALL
		p3.From.Type = obj.TYPE_REG
		p3.From.Reg = REG_R12
		p3.To.Type = obj.TYPE_REG
		p3.To.Reg = REG_CTR
	}

	// We only care about global data: NAME_EXTERN means a global
	// symbol in the Go sense, and p.Sym.Local is true for a few
	// internally defined symbols.
	if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		// MOVD $sym, Rx becomes MOVD sym@GOT, Rx
		// MOVD $sym+<off>, Rx becomes MOVD sym@GOT, Rx; ADD <off>, Rx
		if p.As != AMOVD {
			ctxt.Diag("do not know how to handle TYPE_ADDR in %v with -dynlink", p)
		}
		if p.To.Type != obj.TYPE_REG {
			ctxt.Diag("do not know how to handle LEAQ-type insn to non-register in %v with -dynlink", p)
		}
		p.From.Type = obj.TYPE_MEM
		p.From.Name = obj.NAME_GOTREF
		if p.From.Offset != 0 {
			q := obj.Appendp(ctxt, p)
			q.As = AADD
			q.From.Type = obj.TYPE_CONST
			q.From.Offset = p.From.Offset
			q.To = p.To
			p.From.Offset = 0
		}
	}
	if p.From3 != nil && p.From3.Name == obj.NAME_EXTERN {
		ctxt.Diag("don't know how to handle %v with -dynlink", p)
	}
	var source *obj.Addr
	// MOVx sym, Ry becomes MOVD sym@GOT, REGTMP; MOVx (REGTMP), Ry
	// MOVx Ry, sym becomes MOVD sym@GOT, REGTMP; MOVx Ry, (REGTMP)
	// An addition may be inserted between the two MOVs if there is an offset.
	if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local {
			ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p)
		}
		source = &p.From
	} else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local {
		source = &p.To
	} else {
		return
	}
	if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP {
		return
	}
	if source.Sym.Type == obj.STLSBSS {
		return
	}
	if source.Type != obj.TYPE_MEM {
		ctxt.Diag("don't know how to handle %v with -dynlink", p)
	}
	p1 := obj.Appendp(ctxt, p)
	p2 := obj.Appendp(ctxt, p1)

	p1.As = AMOVD
	p1.From.Type = obj.TYPE_MEM
	p1.From.Sym = source.Sym
	p1.From.Name = obj.NAME_GOTREF
	p1.To.Type = obj.TYPE_REG
	p1.To.Reg = REGTMP

	p2.As = p.As
	p2.From = p.From
	p2.To = p.To
	if p.From.Name == obj.NAME_EXTERN {
		p2.From.Reg = REGTMP
		p2.From.Name = obj.NAME_NONE
		p2.From.Sym = nil
	} else if p.To.Name == obj.NAME_EXTERN {
		p2.To.Reg = REGTMP
		p2.To.Name = obj.NAME_NONE
		p2.To.Sym = nil
	} else {
		return
	}
	obj.Nopout(p)
}
Exemple #23
0
Fichier : obj9.go Projet : gmwu/go
func preprocess(ctxt *obj.Link, cursym *obj.LSym) {
	// TODO(minux): add morestack short-cuts with small fixed frame-size.
	ctxt.Cursym = cursym

	if cursym.Text == nil || cursym.Text.Link == nil {
		return
	}

	p := cursym.Text
	textstksiz := p.To.Offset
	if textstksiz == -8 {
		// Compatibility hack.
		p.From3.Offset |= obj.NOFRAME
		textstksiz = 0
	}
	if textstksiz%8 != 0 {
		ctxt.Diag("frame size %d not a multiple of 8", textstksiz)
	}
	if p.From3.Offset&obj.NOFRAME != 0 {
		if textstksiz != 0 {
			ctxt.Diag("NOFRAME functions must have a frame size of 0, not %d", textstksiz)
		}
	}

	cursym.Args = p.To.Val.(int32)
	cursym.Locals = int32(textstksiz)

	/*
	 * find leaf subroutines
	 * strip NOPs
	 * expand RET
	 * expand BECOME pseudo
	 */
	if ctxt.Debugvlog != 0 {
		fmt.Fprintf(ctxt.Bso, "%5.2f noops\n", obj.Cputime())
	}
	ctxt.Bso.Flush()

	var q *obj.Prog
	var q1 *obj.Prog
	for p := cursym.Text; p != nil; p = p.Link {
		switch p.As {
		/* too hard, just leave alone */
		case obj.ATEXT:
			q = p

			p.Mark |= LABEL | LEAF | SYNC
			if p.Link != nil {
				p.Link.Mark |= LABEL
			}

		case ANOR:
			q = p
			if p.To.Type == obj.TYPE_REG {
				if p.To.Reg == REGZERO {
					p.Mark |= LABEL | SYNC
				}
			}

		case ALWAR,
			ASTWCCC,
			AECIWX,
			AECOWX,
			AEIEIO,
			AICBI,
			AISYNC,
			ATLBIE,
			ATLBIEL,
			ASLBIA,
			ASLBIE,
			ASLBMFEE,
			ASLBMFEV,
			ASLBMTE,
			ADCBF,
			ADCBI,
			ADCBST,
			ADCBT,
			ADCBTST,
			ADCBZ,
			ASYNC,
			ATLBSYNC,
			APTESYNC,
			ATW,
			AWORD,
			ARFI,
			ARFCI,
			ARFID,
			AHRFID:
			q = p
			p.Mark |= LABEL | SYNC
			continue

		case AMOVW, AMOVWZ, AMOVD:
			q = p
			if p.From.Reg >= REG_SPECIAL || p.To.Reg >= REG_SPECIAL {
				p.Mark |= LABEL | SYNC
			}
			continue

		case AFABS,
			AFABSCC,
			AFADD,
			AFADDCC,
			AFCTIW,
			AFCTIWCC,
			AFCTIWZ,
			AFCTIWZCC,
			AFDIV,
			AFDIVCC,
			AFMADD,
			AFMADDCC,
			AFMOVD,
			AFMOVDU,
			/* case AFMOVDS: */
			AFMOVS,
			AFMOVSU,

			/* case AFMOVSD: */
			AFMSUB,
			AFMSUBCC,
			AFMUL,
			AFMULCC,
			AFNABS,
			AFNABSCC,
			AFNEG,
			AFNEGCC,
			AFNMADD,
			AFNMADDCC,
			AFNMSUB,
			AFNMSUBCC,
			AFRSP,
			AFRSPCC,
			AFSUB,
			AFSUBCC:
			q = p

			p.Mark |= FLOAT
			continue

		case ABL,
			ABCL,
			obj.ADUFFZERO,
			obj.ADUFFCOPY:
			cursym.Text.Mark &^= LEAF
			fallthrough

		case ABC,
			ABEQ,
			ABGE,
			ABGT,
			ABLE,
			ABLT,
			ABNE,
			ABR,
			ABVC,
			ABVS:
			p.Mark |= BRANCH
			q = p
			q1 = p.Pcond
			if q1 != nil {
				for q1.As == obj.ANOP {
					q1 = q1.Link
					p.Pcond = q1
				}

				if q1.Mark&LEAF == 0 {
					q1.Mark |= LABEL
				}
			} else {
				p.Mark |= LABEL
			}
			q1 = p.Link
			if q1 != nil {
				q1.Mark |= LABEL
			}
			continue

		case AFCMPO, AFCMPU:
			q = p
			p.Mark |= FCMP | FLOAT
			continue

		case obj.ARET:
			q = p
			if p.Link != nil {
				p.Link.Mark |= LABEL
			}
			continue

		case obj.ANOP:
			q1 = p.Link
			q.Link = q1 /* q is non-nop */
			q1.Mark |= p.Mark
			continue

		default:
			q = p
			continue
		}
	}

	autosize := int32(0)
	var aoffset int
	var mov int
	var o int
	var p1 *obj.Prog
	var p2 *obj.Prog
	for p := cursym.Text; p != nil; p = p.Link {
		o = int(p.As)
		switch o {
		case obj.ATEXT:
			mov = AMOVD
			aoffset = 0
			autosize = int32(textstksiz)

			if p.Mark&LEAF != 0 && autosize == 0 && p.From3.Offset&obj.NOFRAME == 0 {
				// A leaf function with no locals has no frame.
				p.From3.Offset |= obj.NOFRAME
			}

			if p.From3.Offset&obj.NOFRAME == 0 {
				// If there is a stack frame at all, it includes
				// space to save the LR.
				autosize += int32(ctxt.FixedFrameSize())
			}

			p.To.Offset = int64(autosize)

			q = p

			if ctxt.Flag_shared != 0 && cursym.Name != "runtime.duffzero" && cursym.Name != "runtime.duffcopy" {
				// When compiling Go into PIC, all functions must start
				// with instructions to load the TOC pointer into r2:
				//
				//	addis r2, r12, .TOC.-func@ha
				//	addi r2, r2, .TOC.-func@l+4
				//
				// We could probably skip this prologue in some situations
				// but it's a bit subtle. However, it is both safe and
				// necessary to leave the prologue off duffzero and
				// duffcopy as we rely on being able to jump to a specific
				// instruction offset for them.
				//
				// These are AWORDS because there is no (afaict) way to
				// generate the addis instruction except as part of the
				// load of a large constant, and in that case there is no
				// way to use r12 as the source.
				q = obj.Appendp(ctxt, q)
				q.As = AWORD
				q.Lineno = p.Lineno
				q.From.Type = obj.TYPE_CONST
				q.From.Offset = 0x3c4c0000
				q = obj.Appendp(ctxt, q)
				q.As = AWORD
				q.Lineno = p.Lineno
				q.From.Type = obj.TYPE_CONST
				q.From.Offset = 0x38420000
				rel := obj.Addrel(ctxt.Cursym)
				rel.Off = 0
				rel.Siz = 8
				rel.Sym = obj.Linklookup(ctxt, ".TOC.", 0)
				rel.Type = obj.R_ADDRPOWER_PCREL
			}

			if cursym.Text.From3.Offset&obj.NOSPLIT == 0 {
				q = stacksplit(ctxt, q, autosize) // emit split check
			}

			if autosize != 0 {
				/* use MOVDU to adjust R1 when saving R31, if autosize is small */
				if cursym.Text.Mark&LEAF == 0 && autosize >= -BIG && autosize <= BIG {
					mov = AMOVDU
					aoffset = int(-autosize)
				} else {
					q = obj.Appendp(ctxt, q)
					q.As = AADD
					q.Lineno = p.Lineno
					q.From.Type = obj.TYPE_CONST
					q.From.Offset = int64(-autosize)
					q.To.Type = obj.TYPE_REG
					q.To.Reg = REGSP
					q.Spadj = +autosize
				}
			} else if cursym.Text.Mark&LEAF == 0 {
				// A very few functions that do not return to their caller
				// (e.g. gogo) are not identified as leaves but still have
				// no frame.
				cursym.Text.Mark |= LEAF
			}

			if cursym.Text.Mark&LEAF != 0 {
				cursym.Leaf = 1
				break
			}

			q = obj.Appendp(ctxt, q)
			q.As = AMOVD
			q.Lineno = p.Lineno
			q.From.Type = obj.TYPE_REG
			q.From.Reg = REG_LR
			q.To.Type = obj.TYPE_REG
			q.To.Reg = REGTMP

			q = obj.Appendp(ctxt, q)
			q.As = int16(mov)
			q.Lineno = p.Lineno
			q.From.Type = obj.TYPE_REG
			q.From.Reg = REGTMP
			q.To.Type = obj.TYPE_MEM
			q.To.Offset = int64(aoffset)
			q.To.Reg = REGSP
			if q.As == AMOVDU {
				q.Spadj = int32(-aoffset)
			}

			if ctxt.Flag_shared != 0 {
				q = obj.Appendp(ctxt, q)
				q.As = AMOVD
				q.Lineno = p.Lineno
				q.From.Type = obj.TYPE_REG
				q.From.Reg = REG_R2
				q.To.Type = obj.TYPE_MEM
				q.To.Reg = REGSP
				q.To.Offset = 24
			}

			if cursym.Text.From3.Offset&obj.WRAPPER != 0 {
				// if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame
				//
				//	MOVD g_panic(g), R3
				//	CMP R0, R3
				//	BEQ end
				//	MOVD panic_argp(R3), R4
				//	ADD $(autosize+8), R1, R5
				//	CMP R4, R5
				//	BNE end
				//	ADD $8, R1, R6
				//	MOVD R6, panic_argp(R3)
				// end:
				//	NOP
				//
				// The NOP is needed to give the jumps somewhere to land.
				// It is a liblink NOP, not a ppc64 NOP: it encodes to 0 instruction bytes.

				q = obj.Appendp(ctxt, q)

				q.As = AMOVD
				q.From.Type = obj.TYPE_MEM
				q.From.Reg = REGG
				q.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_R3

				q = obj.Appendp(ctxt, q)
				q.As = ACMP
				q.From.Type = obj.TYPE_REG
				q.From.Reg = REG_R0
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_R3

				q = obj.Appendp(ctxt, q)
				q.As = ABEQ
				q.To.Type = obj.TYPE_BRANCH
				p1 = q

				q = obj.Appendp(ctxt, q)
				q.As = AMOVD
				q.From.Type = obj.TYPE_MEM
				q.From.Reg = REG_R3
				q.From.Offset = 0 // Panic.argp
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_R4

				q = obj.Appendp(ctxt, q)
				q.As = AADD
				q.From.Type = obj.TYPE_CONST
				q.From.Offset = int64(autosize) + ctxt.FixedFrameSize()
				q.Reg = REGSP
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_R5

				q = obj.Appendp(ctxt, q)
				q.As = ACMP
				q.From.Type = obj.TYPE_REG
				q.From.Reg = REG_R4
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_R5

				q = obj.Appendp(ctxt, q)
				q.As = ABNE
				q.To.Type = obj.TYPE_BRANCH
				p2 = q

				q = obj.Appendp(ctxt, q)
				q.As = AADD
				q.From.Type = obj.TYPE_CONST
				q.From.Offset = ctxt.FixedFrameSize()
				q.Reg = REGSP
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_R6

				q = obj.Appendp(ctxt, q)
				q.As = AMOVD
				q.From.Type = obj.TYPE_REG
				q.From.Reg = REG_R6
				q.To.Type = obj.TYPE_MEM
				q.To.Reg = REG_R3
				q.To.Offset = 0 // Panic.argp

				q = obj.Appendp(ctxt, q)

				q.As = obj.ANOP
				p1.Pcond = q
				p2.Pcond = q
			}

		case obj.ARET:
			if p.From.Type == obj.TYPE_CONST {
				ctxt.Diag("using BECOME (%v) is not supported!", p)
				break
			}

			retTarget := p.To.Sym

			if cursym.Text.Mark&LEAF != 0 {
				if autosize == 0 {
					p.As = ABR
					p.From = obj.Addr{}
					if retTarget == nil {
						p.To.Type = obj.TYPE_REG
						p.To.Reg = REG_LR
					} else {
						p.To.Type = obj.TYPE_BRANCH
						p.To.Sym = retTarget
					}
					p.Mark |= BRANCH
					break
				}

				p.As = AADD
				p.From.Type = obj.TYPE_CONST
				p.From.Offset = int64(autosize)
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REGSP
				p.Spadj = -autosize

				q = ctxt.NewProg()
				q.As = ABR
				q.Lineno = p.Lineno
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REG_LR
				q.Mark |= BRANCH
				q.Spadj = +autosize

				q.Link = p.Link
				p.Link = q
				break
			}

			p.As = AMOVD
			p.From.Type = obj.TYPE_MEM
			p.From.Offset = 0
			p.From.Reg = REGSP
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REGTMP

			q = ctxt.NewProg()
			q.As = AMOVD
			q.Lineno = p.Lineno
			q.From.Type = obj.TYPE_REG
			q.From.Reg = REGTMP
			q.To.Type = obj.TYPE_REG
			q.To.Reg = REG_LR

			q.Link = p.Link
			p.Link = q
			p = q

			if false {
				// Debug bad returns
				q = ctxt.NewProg()

				q.As = AMOVD
				q.Lineno = p.Lineno
				q.From.Type = obj.TYPE_MEM
				q.From.Offset = 0
				q.From.Reg = REGTMP
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REGTMP

				q.Link = p.Link
				p.Link = q
				p = q
			}

			if autosize != 0 {
				q = ctxt.NewProg()
				q.As = AADD
				q.Lineno = p.Lineno
				q.From.Type = obj.TYPE_CONST
				q.From.Offset = int64(autosize)
				q.To.Type = obj.TYPE_REG
				q.To.Reg = REGSP
				q.Spadj = -autosize

				q.Link = p.Link
				p.Link = q
			}

			q1 = ctxt.NewProg()
			q1.As = ABR
			q1.Lineno = p.Lineno
			if retTarget == nil {
				q1.To.Type = obj.TYPE_REG
				q1.To.Reg = REG_LR
			} else {
				q1.To.Type = obj.TYPE_BRANCH
				q1.To.Sym = retTarget
			}
			q1.Mark |= BRANCH
			q1.Spadj = +autosize

			q1.Link = q.Link
			q.Link = q1
		case AADD:
			if p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP && p.From.Type == obj.TYPE_CONST {
				p.Spadj = int32(-p.From.Offset)
			}
		}
	}
}
Exemple #24
0
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
	s.SetLineno(v.Line)
	switch v.Op {
	case ssa.OpInitMem:
		// memory arg needs no code
	case ssa.OpArg:
		// input args need no code
	case ssa.OpSP, ssa.OpSB, ssa.OpGetG:
		// nothing to do
	case ssa.OpCopy, ssa.OpARMMOVWconvert, ssa.OpARMMOVWreg:
		if v.Type.IsMemory() {
			return
		}
		x := v.Args[0].Reg()
		y := v.Reg()
		if x == y {
			return
		}
		as := arm.AMOVW
		if v.Type.IsFloat() {
			switch v.Type.Size() {
			case 4:
				as = arm.AMOVF
			case 8:
				as = arm.AMOVD
			default:
				panic("bad float size")
			}
		}
		p := gc.Prog(as)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x
		p.To.Type = obj.TYPE_REG
		p.To.Reg = y
	case ssa.OpARMMOVWnop:
		if v.Reg() != v.Args[0].Reg() {
			v.Fatalf("input[0] and output not in same register %s", v.LongString())
		}
		// nothing to do
	case ssa.OpLoadReg:
		if v.Type.IsFlags() {
			v.Fatalf("load flags not implemented: %v", v.LongString())
			return
		}
		p := gc.Prog(loadByType(v.Type))
		gc.AddrAuto(&p.From, v.Args[0])
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpPhi:
		gc.CheckLoweredPhi(v)
	case ssa.OpStoreReg:
		if v.Type.IsFlags() {
			v.Fatalf("store flags not implemented: %v", v.LongString())
			return
		}
		p := gc.Prog(storeByType(v.Type))
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		gc.AddrAuto(&p.To, v)
	case ssa.OpARMUDIVrtcall:
		p := gc.Prog(obj.ACALL)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = obj.Linklookup(gc.Ctxt, "udiv", 0)
	case ssa.OpARMADD,
		ssa.OpARMADC,
		ssa.OpARMSUB,
		ssa.OpARMSBC,
		ssa.OpARMRSB,
		ssa.OpARMAND,
		ssa.OpARMOR,
		ssa.OpARMXOR,
		ssa.OpARMBIC,
		ssa.OpARMMUL,
		ssa.OpARMADDF,
		ssa.OpARMADDD,
		ssa.OpARMSUBF,
		ssa.OpARMSUBD,
		ssa.OpARMMULF,
		ssa.OpARMMULD,
		ssa.OpARMDIVF,
		ssa.OpARMDIVD:
		r := v.Reg()
		r1 := v.Args[0].Reg()
		r2 := v.Args[1].Reg()
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = r2
		p.Reg = r1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = r
	case ssa.OpARMADDS,
		ssa.OpARMSUBS:
		r := v.Reg0()
		r1 := v.Args[0].Reg()
		r2 := v.Args[1].Reg()
		p := gc.Prog(v.Op.Asm())
		p.Scond = arm.C_SBIT
		p.From.Type = obj.TYPE_REG
		p.From.Reg = r2
		p.Reg = r1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = r
	case ssa.OpARMSLL,
		ssa.OpARMSRL,
		ssa.OpARMSRA:
		r := v.Reg()
		r1 := v.Args[0].Reg()
		r2 := v.Args[1].Reg()
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = r2
		p.Reg = r1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = r
	case ssa.OpARMSRAcond:
		// ARM shift instructions uses only the low-order byte of the shift amount
		// generate conditional instructions to deal with large shifts
		// flag is already set
		// SRA.HS	$31, Rarg0, Rdst // shift 31 bits to get the sign bit
		// SRA.LO	Rarg1, Rarg0, Rdst
		r := v.Reg()
		r1 := v.Args[0].Reg()
		r2 := v.Args[1].Reg()
		p := gc.Prog(arm.ASRA)
		p.Scond = arm.C_SCOND_HS
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = 31
		p.Reg = r1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = r
		p = gc.Prog(arm.ASRA)
		p.Scond = arm.C_SCOND_LO
		p.From.Type = obj.TYPE_REG
		p.From.Reg = r2
		p.Reg = r1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = r
	case ssa.OpARMADDconst,
		ssa.OpARMADCconst,
		ssa.OpARMSUBconst,
		ssa.OpARMSBCconst,
		ssa.OpARMRSBconst,
		ssa.OpARMRSCconst,
		ssa.OpARMANDconst,
		ssa.OpARMORconst,
		ssa.OpARMXORconst,
		ssa.OpARMBICconst,
		ssa.OpARMSLLconst,
		ssa.OpARMSRLconst,
		ssa.OpARMSRAconst:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = v.AuxInt
		p.Reg = v.Args[0].Reg()
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMADDSconst,
		ssa.OpARMSUBSconst,
		ssa.OpARMRSBSconst:
		p := gc.Prog(v.Op.Asm())
		p.Scond = arm.C_SBIT
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = v.AuxInt
		p.Reg = v.Args[0].Reg()
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg0()
	case ssa.OpARMSRRconst:
		genshift(arm.AMOVW, 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_RR, v.AuxInt)
	case ssa.OpARMADDshiftLL,
		ssa.OpARMADCshiftLL,
		ssa.OpARMSUBshiftLL,
		ssa.OpARMSBCshiftLL,
		ssa.OpARMRSBshiftLL,
		ssa.OpARMRSCshiftLL,
		ssa.OpARMANDshiftLL,
		ssa.OpARMORshiftLL,
		ssa.OpARMXORshiftLL,
		ssa.OpARMBICshiftLL:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
	case ssa.OpARMADDSshiftLL,
		ssa.OpARMSUBSshiftLL,
		ssa.OpARMRSBSshiftLL:
		p := genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_LL, v.AuxInt)
		p.Scond = arm.C_SBIT
	case ssa.OpARMADDshiftRL,
		ssa.OpARMADCshiftRL,
		ssa.OpARMSUBshiftRL,
		ssa.OpARMSBCshiftRL,
		ssa.OpARMRSBshiftRL,
		ssa.OpARMRSCshiftRL,
		ssa.OpARMANDshiftRL,
		ssa.OpARMORshiftRL,
		ssa.OpARMXORshiftRL,
		ssa.OpARMBICshiftRL:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
	case ssa.OpARMADDSshiftRL,
		ssa.OpARMSUBSshiftRL,
		ssa.OpARMRSBSshiftRL:
		p := genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_LR, v.AuxInt)
		p.Scond = arm.C_SBIT
	case ssa.OpARMADDshiftRA,
		ssa.OpARMADCshiftRA,
		ssa.OpARMSUBshiftRA,
		ssa.OpARMSBCshiftRA,
		ssa.OpARMRSBshiftRA,
		ssa.OpARMRSCshiftRA,
		ssa.OpARMANDshiftRA,
		ssa.OpARMORshiftRA,
		ssa.OpARMXORshiftRA,
		ssa.OpARMBICshiftRA:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
	case ssa.OpARMADDSshiftRA,
		ssa.OpARMSUBSshiftRA,
		ssa.OpARMRSBSshiftRA:
		p := genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_AR, v.AuxInt)
		p.Scond = arm.C_SBIT
	case ssa.OpARMXORshiftRR:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_RR, v.AuxInt)
	case ssa.OpARMMVNshiftLL:
		genshift(v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
	case ssa.OpARMMVNshiftRL:
		genshift(v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
	case ssa.OpARMMVNshiftRA:
		genshift(v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
	case ssa.OpARMMVNshiftLLreg:
		genregshift(v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL)
	case ssa.OpARMMVNshiftRLreg:
		genregshift(v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR)
	case ssa.OpARMMVNshiftRAreg:
		genregshift(v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR)
	case ssa.OpARMADDshiftLLreg,
		ssa.OpARMADCshiftLLreg,
		ssa.OpARMSUBshiftLLreg,
		ssa.OpARMSBCshiftLLreg,
		ssa.OpARMRSBshiftLLreg,
		ssa.OpARMRSCshiftLLreg,
		ssa.OpARMANDshiftLLreg,
		ssa.OpARMORshiftLLreg,
		ssa.OpARMXORshiftLLreg,
		ssa.OpARMBICshiftLLreg:
		genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_LL)
	case ssa.OpARMADDSshiftLLreg,
		ssa.OpARMSUBSshiftLLreg,
		ssa.OpARMRSBSshiftLLreg:
		p := genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_LL)
		p.Scond = arm.C_SBIT
	case ssa.OpARMADDshiftRLreg,
		ssa.OpARMADCshiftRLreg,
		ssa.OpARMSUBshiftRLreg,
		ssa.OpARMSBCshiftRLreg,
		ssa.OpARMRSBshiftRLreg,
		ssa.OpARMRSCshiftRLreg,
		ssa.OpARMANDshiftRLreg,
		ssa.OpARMORshiftRLreg,
		ssa.OpARMXORshiftRLreg,
		ssa.OpARMBICshiftRLreg:
		genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_LR)
	case ssa.OpARMADDSshiftRLreg,
		ssa.OpARMSUBSshiftRLreg,
		ssa.OpARMRSBSshiftRLreg:
		p := genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_LR)
		p.Scond = arm.C_SBIT
	case ssa.OpARMADDshiftRAreg,
		ssa.OpARMADCshiftRAreg,
		ssa.OpARMSUBshiftRAreg,
		ssa.OpARMSBCshiftRAreg,
		ssa.OpARMRSBshiftRAreg,
		ssa.OpARMRSCshiftRAreg,
		ssa.OpARMANDshiftRAreg,
		ssa.OpARMORshiftRAreg,
		ssa.OpARMXORshiftRAreg,
		ssa.OpARMBICshiftRAreg:
		genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_AR)
	case ssa.OpARMADDSshiftRAreg,
		ssa.OpARMSUBSshiftRAreg,
		ssa.OpARMRSBSshiftRAreg:
		p := genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_AR)
		p.Scond = arm.C_SBIT
	case ssa.OpARMHMUL,
		ssa.OpARMHMULU:
		// 32-bit high multiplication
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		p.Reg = v.Args[1].Reg()
		p.To.Type = obj.TYPE_REGREG
		p.To.Reg = v.Reg()
		p.To.Offset = arm.REGTMP // throw away low 32-bit into tmp register
	case ssa.OpARMMULLU:
		// 32-bit multiplication, results 64-bit, high 32-bit in out0, low 32-bit in out1
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		p.Reg = v.Args[1].Reg()
		p.To.Type = obj.TYPE_REGREG
		p.To.Reg = v.Reg0()           // high 32-bit
		p.To.Offset = int64(v.Reg1()) // low 32-bit
	case ssa.OpARMMULA:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		p.Reg = v.Args[1].Reg()
		p.To.Type = obj.TYPE_REGREG2
		p.To.Reg = v.Reg()                   // result
		p.To.Offset = int64(v.Args[2].Reg()) // addend
	case ssa.OpARMMOVWconst:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = v.AuxInt
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMMOVFconst,
		ssa.OpARMMOVDconst:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_FCONST
		p.From.Val = math.Float64frombits(uint64(v.AuxInt))
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMCMP,
		ssa.OpARMCMN,
		ssa.OpARMTST,
		ssa.OpARMTEQ,
		ssa.OpARMCMPF,
		ssa.OpARMCMPD:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		// Special layout in ARM assembly
		// Comparing to x86, the operands of ARM's CMP are reversed.
		p.From.Reg = v.Args[1].Reg()
		p.Reg = v.Args[0].Reg()
	case ssa.OpARMCMPconst,
		ssa.OpARMCMNconst,
		ssa.OpARMTSTconst,
		ssa.OpARMTEQconst:
		// Special layout in ARM assembly
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = v.AuxInt
		p.Reg = v.Args[0].Reg()
	case ssa.OpARMCMPF0,
		ssa.OpARMCMPD0:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
	case ssa.OpARMCMPshiftLL:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_LL, v.AuxInt)
	case ssa.OpARMCMPshiftRL:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_LR, v.AuxInt)
	case ssa.OpARMCMPshiftRA:
		genshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_AR, v.AuxInt)
	case ssa.OpARMCMPshiftLLreg:
		genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_LL)
	case ssa.OpARMCMPshiftRLreg:
		genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_LR)
	case ssa.OpARMCMPshiftRAreg:
		genregshift(v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_AR)
	case ssa.OpARMMOVWaddr:
		p := gc.Prog(arm.AMOVW)
		p.From.Type = obj.TYPE_ADDR
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()

		var wantreg string
		// MOVW $sym+off(base), R
		// the assembler expands it as the following:
		// - base is SP: add constant offset to SP (R13)
		//               when constant is large, tmp register (R11) may be used
		// - base is SB: load external address from constant pool (use relocation)
		switch v.Aux.(type) {
		default:
			v.Fatalf("aux is of unknown type %T", v.Aux)
		case *ssa.ExternSymbol:
			wantreg = "SB"
			gc.AddAux(&p.From, v)
		case *ssa.ArgSymbol, *ssa.AutoSymbol:
			wantreg = "SP"
			gc.AddAux(&p.From, v)
		case nil:
			// No sym, just MOVW $off(SP), R
			wantreg = "SP"
			p.From.Reg = arm.REGSP
			p.From.Offset = v.AuxInt
		}
		if reg := v.Args[0].RegName(); reg != wantreg {
			v.Fatalf("bad reg %s for symbol type %T, want %s", reg, v.Aux, wantreg)
		}

	case ssa.OpARMMOVBload,
		ssa.OpARMMOVBUload,
		ssa.OpARMMOVHload,
		ssa.OpARMMOVHUload,
		ssa.OpARMMOVWload,
		ssa.OpARMMOVFload,
		ssa.OpARMMOVDload:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = v.Args[0].Reg()
		gc.AddAux(&p.From, v)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMMOVBstore,
		ssa.OpARMMOVHstore,
		ssa.OpARMMOVWstore,
		ssa.OpARMMOVFstore,
		ssa.OpARMMOVDstore:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[1].Reg()
		p.To.Type = obj.TYPE_MEM
		p.To.Reg = v.Args[0].Reg()
		gc.AddAux(&p.To, v)
	case ssa.OpARMMOVWloadidx:
		// this is just shift 0 bits
		fallthrough
	case ssa.OpARMMOVWloadshiftLL:
		p := genshift(v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
		p.From.Reg = v.Args[0].Reg()
	case ssa.OpARMMOVWloadshiftRL:
		p := genshift(v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
		p.From.Reg = v.Args[0].Reg()
	case ssa.OpARMMOVWloadshiftRA:
		p := genshift(v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
		p.From.Reg = v.Args[0].Reg()
	case ssa.OpARMMOVWstoreidx:
		// this is just shift 0 bits
		fallthrough
	case ssa.OpARMMOVWstoreshiftLL:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[2].Reg()
		p.To.Type = obj.TYPE_SHIFT
		p.To.Reg = v.Args[0].Reg()
		p.To.Offset = int64(makeshift(v.Args[1].Reg(), arm.SHIFT_LL, v.AuxInt))
	case ssa.OpARMMOVWstoreshiftRL:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[2].Reg()
		p.To.Type = obj.TYPE_SHIFT
		p.To.Reg = v.Args[0].Reg()
		p.To.Offset = int64(makeshift(v.Args[1].Reg(), arm.SHIFT_LR, v.AuxInt))
	case ssa.OpARMMOVWstoreshiftRA:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[2].Reg()
		p.To.Type = obj.TYPE_SHIFT
		p.To.Reg = v.Args[0].Reg()
		p.To.Offset = int64(makeshift(v.Args[1].Reg(), arm.SHIFT_AR, v.AuxInt))
	case ssa.OpARMMOVBreg,
		ssa.OpARMMOVBUreg,
		ssa.OpARMMOVHreg,
		ssa.OpARMMOVHUreg:
		a := v.Args[0]
		for a.Op == ssa.OpCopy || a.Op == ssa.OpARMMOVWreg || a.Op == ssa.OpARMMOVWnop {
			a = a.Args[0]
		}
		if a.Op == ssa.OpLoadReg {
			t := a.Type
			switch {
			case v.Op == ssa.OpARMMOVBreg && t.Size() == 1 && t.IsSigned(),
				v.Op == ssa.OpARMMOVBUreg && t.Size() == 1 && !t.IsSigned(),
				v.Op == ssa.OpARMMOVHreg && t.Size() == 2 && t.IsSigned(),
				v.Op == ssa.OpARMMOVHUreg && t.Size() == 2 && !t.IsSigned():
				// arg is a proper-typed load, already zero/sign-extended, don't extend again
				if v.Reg() == v.Args[0].Reg() {
					return
				}
				p := gc.Prog(arm.AMOVW)
				p.From.Type = obj.TYPE_REG
				p.From.Reg = v.Args[0].Reg()
				p.To.Type = obj.TYPE_REG
				p.To.Reg = v.Reg()
				return
			default:
			}
		}
		fallthrough
	case ssa.OpARMMVN,
		ssa.OpARMCLZ,
		ssa.OpARMSQRTD,
		ssa.OpARMNEGF,
		ssa.OpARMNEGD,
		ssa.OpARMMOVWF,
		ssa.OpARMMOVWD,
		ssa.OpARMMOVFW,
		ssa.OpARMMOVDW,
		ssa.OpARMMOVFD,
		ssa.OpARMMOVDF:
		p := gc.Prog(v.Op.Asm())
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMMOVWUF,
		ssa.OpARMMOVWUD,
		ssa.OpARMMOVFWU,
		ssa.OpARMMOVDWU:
		p := gc.Prog(v.Op.Asm())
		p.Scond = arm.C_UBIT
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMCMOVWHSconst:
		p := gc.Prog(arm.AMOVW)
		p.Scond = arm.C_SCOND_HS
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = v.AuxInt
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMCMOVWLSconst:
		p := gc.Prog(arm.AMOVW)
		p.Scond = arm.C_SCOND_LS
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = v.AuxInt
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpARMCALLstatic:
		if v.Aux.(*gc.Sym) == gc.Deferreturn.Sym {
			// Deferred calls will appear to be returning to
			// the CALL deferreturn(SB) that we are about to emit.
			// However, the stack trace code will show the line
			// of the instruction byte before the return PC.
			// To avoid that being an unrelated instruction,
			// insert an actual hardware NOP that will have the right line number.
			// This is different from obj.ANOP, which is a virtual no-op
			// that doesn't make it into the instruction stream.
			ginsnop()
		}
		p := gc.Prog(obj.ACALL)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = gc.Linksym(v.Aux.(*gc.Sym))
		if gc.Maxarg < v.AuxInt {
			gc.Maxarg = v.AuxInt
		}
	case ssa.OpARMCALLclosure:
		p := gc.Prog(obj.ACALL)
		p.To.Type = obj.TYPE_MEM
		p.To.Offset = 0
		p.To.Reg = v.Args[0].Reg()
		if gc.Maxarg < v.AuxInt {
			gc.Maxarg = v.AuxInt
		}
	case ssa.OpARMCALLdefer:
		p := gc.Prog(obj.ACALL)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = gc.Linksym(gc.Deferproc.Sym)
		if gc.Maxarg < v.AuxInt {
			gc.Maxarg = v.AuxInt
		}
	case ssa.OpARMCALLgo:
		p := gc.Prog(obj.ACALL)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = gc.Linksym(gc.Newproc.Sym)
		if gc.Maxarg < v.AuxInt {
			gc.Maxarg = v.AuxInt
		}
	case ssa.OpARMCALLinter:
		p := gc.Prog(obj.ACALL)
		p.To.Type = obj.TYPE_MEM
		p.To.Offset = 0
		p.To.Reg = v.Args[0].Reg()
		if gc.Maxarg < v.AuxInt {
			gc.Maxarg = v.AuxInt
		}
	case ssa.OpARMDUFFZERO:
		p := gc.Prog(obj.ADUFFZERO)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg))
		p.To.Offset = v.AuxInt
	case ssa.OpARMDUFFCOPY:
		p := gc.Prog(obj.ADUFFCOPY)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg))
		p.To.Offset = v.AuxInt
	case ssa.OpARMLoweredNilCheck:
		// Issue a load which will fault if arg is nil.
		p := gc.Prog(arm.AMOVB)
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = v.Args[0].Reg()
		gc.AddAux(&p.From, v)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = arm.REGTMP
		if gc.Debug_checknil != 0 && v.Line > 1 { // v.Line==1 in generated wrappers
			gc.Warnl(v.Line, "generated nil check")
		}
	case ssa.OpARMLoweredZero:
		// MOVW.P	Rarg2, 4(R1)
		// CMP	Rarg1, R1
		// BLE	-2(PC)
		// arg1 is the address of the last element to zero
		// arg2 is known to be zero
		// auxint is alignment
		var sz int64
		var mov obj.As
		switch {
		case v.AuxInt%4 == 0:
			sz = 4
			mov = arm.AMOVW
		case v.AuxInt%2 == 0:
			sz = 2
			mov = arm.AMOVH
		default:
			sz = 1
			mov = arm.AMOVB
		}
		p := gc.Prog(mov)
		p.Scond = arm.C_PBIT
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[2].Reg()
		p.To.Type = obj.TYPE_MEM
		p.To.Reg = arm.REG_R1
		p.To.Offset = sz
		p2 := gc.Prog(arm.ACMP)
		p2.From.Type = obj.TYPE_REG
		p2.From.Reg = v.Args[1].Reg()
		p2.Reg = arm.REG_R1
		p3 := gc.Prog(arm.ABLE)
		p3.To.Type = obj.TYPE_BRANCH
		gc.Patch(p3, p)
	case ssa.OpARMLoweredMove:
		// MOVW.P	4(R1), Rtmp
		// MOVW.P	Rtmp, 4(R2)
		// CMP	Rarg2, R1
		// BLE	-3(PC)
		// arg2 is the address of the last element of src
		// auxint is alignment
		var sz int64
		var mov obj.As
		switch {
		case v.AuxInt%4 == 0:
			sz = 4
			mov = arm.AMOVW
		case v.AuxInt%2 == 0:
			sz = 2
			mov = arm.AMOVH
		default:
			sz = 1
			mov = arm.AMOVB
		}
		p := gc.Prog(mov)
		p.Scond = arm.C_PBIT
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = arm.REG_R1
		p.From.Offset = sz
		p.To.Type = obj.TYPE_REG
		p.To.Reg = arm.REGTMP
		p2 := gc.Prog(mov)
		p2.Scond = arm.C_PBIT
		p2.From.Type = obj.TYPE_REG
		p2.From.Reg = arm.REGTMP
		p2.To.Type = obj.TYPE_MEM
		p2.To.Reg = arm.REG_R2
		p2.To.Offset = sz
		p3 := gc.Prog(arm.ACMP)
		p3.From.Type = obj.TYPE_REG
		p3.From.Reg = v.Args[2].Reg()
		p3.Reg = arm.REG_R1
		p4 := gc.Prog(arm.ABLE)
		p4.To.Type = obj.TYPE_BRANCH
		gc.Patch(p4, p)
	case ssa.OpVarDef:
		gc.Gvardef(v.Aux.(*gc.Node))
	case ssa.OpVarKill:
		gc.Gvarkill(v.Aux.(*gc.Node))
	case ssa.OpVarLive:
		gc.Gvarlive(v.Aux.(*gc.Node))
	case ssa.OpKeepAlive:
		gc.KeepAlive(v)
	case ssa.OpARMEqual,
		ssa.OpARMNotEqual,
		ssa.OpARMLessThan,
		ssa.OpARMLessEqual,
		ssa.OpARMGreaterThan,
		ssa.OpARMGreaterEqual,
		ssa.OpARMLessThanU,
		ssa.OpARMLessEqualU,
		ssa.OpARMGreaterThanU,
		ssa.OpARMGreaterEqualU:
		// generate boolean values
		// use conditional move
		p := gc.Prog(arm.AMOVW)
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = 0
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
		p = gc.Prog(arm.AMOVW)
		p.Scond = condBits[v.Op]
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = 1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()
	case ssa.OpSelect0, ssa.OpSelect1:
		// nothing to do
	case ssa.OpARMLoweredGetClosurePtr:
		// Closure pointer is R7 (arm.REGCTXT).
		gc.CheckLoweredGetClosurePtr(v)
	case ssa.OpARMFlagEQ,
		ssa.OpARMFlagLT_ULT,
		ssa.OpARMFlagLT_UGT,
		ssa.OpARMFlagGT_ULT,
		ssa.OpARMFlagGT_UGT:
		v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString())
	case ssa.OpARMInvertFlags:
		v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
	default:
		v.Fatalf("genValue not implemented: %s", v.LongString())
	}
}
Exemple #25
0
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog {
	// Leaf function with no frame is effectively NOSPLIT.
	if framesize == 0 {
		return p
	}

	var mov, add, sub obj.As

	if ctxt.Mode&Mips64 != 0 {
		add = AADDV
		mov = AMOVV
		sub = ASUBVU
	} else {
		add = AADDU
		mov = AMOVW
		sub = ASUBU
	}

	// MOV	g_stackguard(g), R1
	p = obj.Appendp(ctxt, p)

	p.As = mov
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = REGG
	p.From.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0
	if ctxt.Cursym.CFunc() {
		p.From.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1
	}
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R1

	var q *obj.Prog
	if framesize <= obj.StackSmall {
		// small stack: SP < stackguard
		//	AGTU	SP, stackguard, R1
		p = obj.Appendp(ctxt, p)

		p.As = ASGTU
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REGSP
		p.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R1
	} else if framesize <= obj.StackBig {
		// large stack: SP-framesize < stackguard-StackSmall
		//	ADD	$-framesize, SP, R2
		//	SGTU	R2, stackguard, R1
		p = obj.Appendp(ctxt, p)

		p.As = add
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(-framesize)
		p.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = ASGTU
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R2
		p.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R1
	} else {
		// Such a large stack we need to protect against wraparound.
		// If SP is close to zero:
		//	SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall)
		// The +StackGuard on both sides is required to keep the left side positive:
		// SP is allowed to be slightly below stackguard. See stack.h.
		//
		// Preemption sets stackguard to StackPreempt, a very large value.
		// That breaks the math above, so we have to check for that explicitly.
		//	// stackguard is R1
		//	MOV	$StackPreempt, R2
		//	BEQ	R1, R2, label-of-call-to-morestack
		//	ADD	$StackGuard, SP, R2
		//	SUB	R1, R2
		//	MOV	$(framesize+(StackGuard-StackSmall)), R1
		//	SGTU	R2, R1, R1
		p = obj.Appendp(ctxt, p)

		p.As = mov
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = obj.StackPreempt
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		q = p
		p.As = ABEQ
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REG_R2
		p.To.Type = obj.TYPE_BRANCH
		p.Mark |= BRANCH

		p = obj.Appendp(ctxt, p)
		p.As = add
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = obj.StackGuard
		p.Reg = REGSP
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = sub
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = mov
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(framesize) + obj.StackGuard - obj.StackSmall
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R1

		p = obj.Appendp(ctxt, p)
		p.As = ASGTU
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R2
		p.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R1
	}

	// q1: BNE	R1, done
	p = obj.Appendp(ctxt, p)
	q1 := p

	p.As = ABNE
	p.From.Type = obj.TYPE_REG
	p.From.Reg = REG_R1
	p.To.Type = obj.TYPE_BRANCH
	p.Mark |= BRANCH

	// MOV	LINK, R3
	p = obj.Appendp(ctxt, p)

	p.As = mov
	p.From.Type = obj.TYPE_REG
	p.From.Reg = REGLINK
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R3
	if q != nil {
		q.Pcond = p
		p.Mark |= LABEL
	}

	// JAL	runtime.morestack(SB)
	p = obj.Appendp(ctxt, p)

	p.As = AJAL
	p.To.Type = obj.TYPE_BRANCH
	if ctxt.Cursym.CFunc() {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestackc", 0)
	} else if ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0 {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack_noctxt", 0)
	} else {
		p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack", 0)
	}
	p.Mark |= BRANCH

	// JMP	start
	p = obj.Appendp(ctxt, p)

	p.As = AJMP
	p.To.Type = obj.TYPE_BRANCH
	p.Pcond = ctxt.Cursym.Text.Link
	p.Mark |= BRANCH

	// placeholder for q1's jump target
	p = obj.Appendp(ctxt, p)

	p.As = obj.ANOP // zero-width place holder
	q1.Pcond = p

	return p
}
Exemple #26
0
func progedit(ctxt *obj.Link, p *obj.Prog) {
	p.From.Class = 0
	p.To.Class = 0

	// $0 results in C_ZCON, which matches both C_REG and various
	// C_xCON, however the C_REG cases in asmout don't expect a
	// constant, so they will use the register fields and assemble
	// a R0. To prevent that, rewrite $0 as ZR.
	if p.From.Type == obj.TYPE_CONST && p.From.Offset == 0 {
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REGZERO
	}
	if p.To.Type == obj.TYPE_CONST && p.To.Offset == 0 {
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REGZERO
	}

	// Rewrite BR/BL to symbol as TYPE_BRANCH.
	switch p.As {
	case AB,
		ABL,
		obj.ARET,
		obj.ADUFFZERO,
		obj.ADUFFCOPY:
		if p.To.Sym != nil {
			p.To.Type = obj.TYPE_BRANCH
		}
		break
	}

	// Rewrite float constants to values stored in memory.
	switch p.As {
	case AFMOVS:
		if p.From.Type == obj.TYPE_FCONST {
			f32 := float32(p.From.Val.(float64))
			i32 := math.Float32bits(f32)
			literal := fmt.Sprintf("$f32.%08x", i32)
			s := obj.Linklookup(ctxt, literal, 0)
			s.Size = 4
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}

	case AFMOVD:
		if p.From.Type == obj.TYPE_FCONST {
			i64 := math.Float64bits(p.From.Val.(float64))
			literal := fmt.Sprintf("$f64.%016x", i64)
			s := obj.Linklookup(ctxt, literal, 0)
			s.Size = 8
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}

		break
	}

	// Rewrite negative immediates as positive immediates with
	// complementary instruction.
	switch p.As {
	case AADD, ASUB, ACMP, ACMN:
		if p.From.Type == obj.TYPE_CONST && p.From.Offset < 0 && p.From.Offset != -1<<63 {
			p.From.Offset = -p.From.Offset
			p.As = complements[p.As]
		}
	case AADDW, ASUBW, ACMPW, ACMNW:
		if p.From.Type == obj.TYPE_CONST && p.From.Offset < 0 && int32(p.From.Offset) != -1<<31 {
			p.From.Offset = -p.From.Offset
			p.As = complements[p.As]
		}
	}

	// For 32-bit logical instruction with constant,
	// rewrite the high 32-bit to be a repetition of
	// the low 32-bit, so that the BITCON test can be
	// shared for both 32-bit and 64-bit. 32-bit ops
	// will zero the high 32-bit of the destination
	// register anyway.
	switch p.As {
	case AANDW, AORRW, AEORW, AANDSW:
		if p.From.Type == obj.TYPE_CONST {
			v := p.From.Offset & 0xffffffff
			p.From.Offset = v | v<<32
		}
	}

	if ctxt.Flag_dynlink {
		rewriteToUseGot(ctxt, p)
	}
}
Exemple #27
0
func progedit(ctxt *obj.Link, p *obj.Prog) {
	p.From.Class = 0
	p.To.Class = 0

	// Rewrite B/BL to symbol as TYPE_BRANCH.
	switch p.As {
	case AB,
		ABL,
		obj.ADUFFZERO,
		obj.ADUFFCOPY:
		if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil {
			p.To.Type = obj.TYPE_BRANCH
		}
	}

	// Replace TLS register fetches on older ARM procesors.
	switch p.As {
	// Treat MRC 15, 0, <reg>, C13, C0, 3 specially.
	case AMRC:
		if p.To.Offset&0xffff0fff == 0xee1d0f70 {
			// Because the instruction might be rewriten to a BL which returns in R0
			// the register must be zero.
			if p.To.Offset&0xf000 != 0 {
				ctxt.Diag("%v: TLS MRC instruction must write to R0 as it might get translated into a BL instruction", p.Line())
			}

			if ctxt.Goarm < 7 {
				// Replace it with BL runtime.read_tls_fallback(SB) for ARM CPUs that lack the tls extension.
				if progedit_tlsfallback == nil {
					progedit_tlsfallback = obj.Linklookup(ctxt, "runtime.read_tls_fallback", 0)
				}

				// MOVW	LR, R11
				p.As = AMOVW

				p.From.Type = obj.TYPE_REG
				p.From.Reg = REGLINK
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REGTMP

				// BL	runtime.read_tls_fallback(SB)
				p = obj.Appendp(ctxt, p)

				p.As = ABL
				p.To.Type = obj.TYPE_BRANCH
				p.To.Sym = progedit_tlsfallback
				p.To.Offset = 0

				// MOVW	R11, LR
				p = obj.Appendp(ctxt, p)

				p.As = AMOVW
				p.From.Type = obj.TYPE_REG
				p.From.Reg = REGTMP
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REGLINK
				break
			}
		}

		// Otherwise, MRC/MCR instructions need no further treatment.
		p.As = AWORD
	}

	// Rewrite float constants to values stored in memory.
	switch p.As {
	case AMOVF:
		if p.From.Type == obj.TYPE_FCONST && chipfloat5(ctxt, p.From.Val.(float64)) < 0 && (chipzero5(ctxt, p.From.Val.(float64)) < 0 || p.Scond&C_SCOND != C_SCOND_NONE) {
			f32 := float32(p.From.Val.(float64))
			i32 := math.Float32bits(f32)
			literal := fmt.Sprintf("$f32.%08x", i32)
			s := obj.Linklookup(ctxt, literal, 0)
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}

	case AMOVD:
		if p.From.Type == obj.TYPE_FCONST && chipfloat5(ctxt, p.From.Val.(float64)) < 0 && (chipzero5(ctxt, p.From.Val.(float64)) < 0 || p.Scond&C_SCOND != C_SCOND_NONE) {
			i64 := math.Float64bits(p.From.Val.(float64))
			literal := fmt.Sprintf("$f64.%016x", i64)
			s := obj.Linklookup(ctxt, literal, 0)
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}
	}
}
Exemple #28
0
Fichier : obj9.go Projet : gmwu/go
func progedit(ctxt *obj.Link, p *obj.Prog) {
	p.From.Class = 0
	p.To.Class = 0

	// Rewrite BR/BL to symbol as TYPE_BRANCH.
	switch p.As {
	case ABR,
		ABL,
		obj.ARET,
		obj.ADUFFZERO,
		obj.ADUFFCOPY:
		if p.To.Sym != nil {
			p.To.Type = obj.TYPE_BRANCH
		}
	}

	// Rewrite float constants to values stored in memory.
	switch p.As {
	case AFMOVS:
		if p.From.Type == obj.TYPE_FCONST {
			f32 := float32(p.From.Val.(float64))
			i32 := math.Float32bits(f32)
			literal := fmt.Sprintf("$f32.%08x", i32)
			s := obj.Linklookup(ctxt, literal, 0)
			s.Size = 4
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}

	case AFMOVD:
		if p.From.Type == obj.TYPE_FCONST {
			i64 := math.Float64bits(p.From.Val.(float64))
			literal := fmt.Sprintf("$f64.%016x", i64)
			s := obj.Linklookup(ctxt, literal, 0)
			s.Size = 8
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}

		// Put >32-bit constants in memory and load them
	case AMOVD:
		if p.From.Type == obj.TYPE_CONST && p.From.Name == obj.NAME_NONE && p.From.Reg == 0 && int64(int32(p.From.Offset)) != p.From.Offset {
			literal := fmt.Sprintf("$i64.%016x", uint64(p.From.Offset))
			s := obj.Linklookup(ctxt, literal, 0)
			s.Size = 8
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Sym.Local = true
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}
	}

	// Rewrite SUB constants into ADD.
	switch p.As {
	case ASUBC:
		if p.From.Type == obj.TYPE_CONST {
			p.From.Offset = -p.From.Offset
			p.As = AADDC
		}

	case ASUBCCC:
		if p.From.Type == obj.TYPE_CONST {
			p.From.Offset = -p.From.Offset
			p.As = AADDCCC
		}

	case ASUB:
		if p.From.Type == obj.TYPE_CONST {
			p.From.Offset = -p.From.Offset
			p.As = AADD
		}
	}
	if ctxt.Flag_dynlink {
		rewriteToUseGot(ctxt, p)
	}
}
Exemple #29
0
func typelinkLSym(t *Type) *obj.LSym {
	name := "go.typelink." + Tconv(t, FmtLeft) // complete, unambiguous type name
	return obj.Linklookup(Ctxt, name, 0)
}
Exemple #30
0
func softfloat(ctxt *obj.Link, cursym *obj.LSym) {
	if ctxt.Goarm > 5 {
		return
	}

	symsfloat := obj.Linklookup(ctxt, "_sfloat", 0)

	wasfloat := 0
	for p := cursym.Text; p != nil; p = p.Link {
		if p.Pcond != nil {
			p.Pcond.Mark |= LABEL
		}
	}
	var next *obj.Prog
	for p := cursym.Text; p != nil; p = p.Link {
		switch p.As {
		case AMOVW:
			if isfloatreg(&p.To) || isfloatreg(&p.From) {
				goto soft
			}
			goto notsoft

		case AMOVWD,
			AMOVWF,
			AMOVDW,
			AMOVFW,
			AMOVFD,
			AMOVDF,
			AMOVF,
			AMOVD,
			ACMPF,
			ACMPD,
			AADDF,
			AADDD,
			ASUBF,
			ASUBD,
			AMULF,
			AMULD,
			ADIVF,
			ADIVD,
			ASQRTF,
			ASQRTD,
			AABSF,
			AABSD:
			goto soft

		default:
			goto notsoft
		}

	soft:
		if wasfloat == 0 || (p.Mark&LABEL != 0) {
			next = ctxt.NewProg()
			*next = *p

			// BL _sfloat(SB)
			*p = obj.Prog{}
			p.Ctxt = ctxt
			p.Link = next
			p.As = ABL
			p.To.Type = obj.TYPE_BRANCH
			p.To.Sym = symsfloat
			p.Lineno = next.Lineno

			p = next
			wasfloat = 1
		}

		continue

	notsoft:
		wasfloat = 0
	}
}