Exemple #1
0
// TestSigCacheAddEvictEntry tests the eviction case where a new signature
// triplet is added to a full signature cache which should trigger randomized
// eviction, followed by adding the new element to the cache.
func TestSigCacheAddEvictEntry(t *testing.T) {
	// Create a sigcache that can hold up to 100 entries.
	sigCacheSize := uint(100)
	sigCache := NewSigCache(sigCacheSize)

	// Fill the sigcache up with some random sig triplets.
	for i := uint(0); i < sigCacheSize; i++ {
		msg, sig, key, err := genRandomSig()
		if err != nil {
			t.Fatalf("unable to generate random signature test data")
		}

		sigCache.Add(*msg, sig, key)

		sigCopy, _ := btcec.ParseSignature(sig.Serialize(), btcec.S256())
		keyCopy, _ := btcec.ParsePubKey(key.SerializeCompressed(), btcec.S256())
		if !sigCache.Exists(*msg, sigCopy, keyCopy) {
			t.Errorf("previously added item not found in signature" +
				"cache")
		}
	}

	// The sigcache should now have sigCacheSize entries within it.
	if uint(len(sigCache.validSigs)) != sigCacheSize {
		t.Fatalf("sigcache should now have %v entries, instead it has %v",
			sigCacheSize, len(sigCache.validSigs))
	}

	// Add a new entry, this should cause eviction of a randomly chosen
	// previous entry.
	msgNew, sigNew, keyNew, err := genRandomSig()
	if err != nil {
		t.Fatalf("unable to generate random signature test data")
	}
	sigCache.Add(*msgNew, sigNew, keyNew)

	// The sigcache should still have sigCache entries.
	if uint(len(sigCache.validSigs)) != sigCacheSize {
		t.Fatalf("sigcache should now have %v entries, instead it has %v",
			sigCacheSize, len(sigCache.validSigs))
	}

	// The entry added above should be found within the sigcache.
	sigNewCopy, _ := btcec.ParseSignature(sigNew.Serialize(), btcec.S256())
	keyNewCopy, _ := btcec.ParsePubKey(keyNew.SerializeCompressed(), btcec.S256())
	if !sigCache.Exists(*msgNew, sigNewCopy, keyNewCopy) {
		t.Fatalf("previously added item not found in signature cache")
	}
}
Exemple #2
0
// TestSigCacheAddMaxEntriesZeroOrNegative tests that if a sigCache is created
// with a max size <= 0, then no entries are added to the sigcache at all.
func TestSigCacheAddMaxEntriesZeroOrNegative(t *testing.T) {
	// Create a sigcache that can hold up to 0 entries.
	sigCache := NewSigCache(0)

	// Generate a random sigCache entry triplet.
	msg1, sig1, key1, err := genRandomSig()
	if err != nil {
		t.Errorf("unable to generate random signature test data")
	}

	// Add the triplet to the signature cache.
	sigCache.Add(*msg1, sig1, key1)

	// The generated triplet should not be found.
	sig1Copy, _ := btcec.ParseSignature(sig1.Serialize(), btcec.S256())
	key1Copy, _ := btcec.ParsePubKey(key1.SerializeCompressed(), btcec.S256())
	if sigCache.Exists(*msg1, sig1Copy, key1Copy) {
		t.Errorf("previously added signature found in sigcache, but" +
			"shouldn't have been")
	}

	// There shouldn't be any entries in the sigCache.
	if len(sigCache.validSigs) != 0 {
		t.Errorf("%v items found in sigcache, no items should have"+
			"been added", len(sigCache.validSigs))
	}
}
Exemple #3
0
func TestPubKeys(t *testing.T) {
	for _, test := range pubKeyTests {
		pk, err := btcec.ParsePubKey(test.key, btcec.S256())
		if err != nil {
			if test.isValid {
				t.Errorf("%s pubkey failed when shouldn't %v",
					test.name, err)
			}
			continue
		}
		if !test.isValid {
			t.Errorf("%s counted as valid when it should fail",
				test.name)
			continue
		}
		var pkStr []byte
		switch test.format {
		case btcec.TstPubkeyUncompressed:
			pkStr = (*btcec.PublicKey)(pk).SerializeUncompressed()
		case btcec.TstPubkeyCompressed:
			pkStr = (*btcec.PublicKey)(pk).SerializeCompressed()
		case btcec.TstPubkeyHybrid:
			pkStr = (*btcec.PublicKey)(pk).SerializeHybrid()
		}
		if !bytes.Equal(test.key, pkStr) {
			t.Errorf("%s pubkey: serialized keys do not match.",
				test.name)
			spew.Dump(test.key)
			spew.Dump(pkStr)
		}
	}
}
Exemple #4
0
func TestPrivKeys(t *testing.T) {
	tests := []struct {
		name string
		key  []byte
	}{
		{
			name: "check curve",
			key: []byte{
				0xea, 0xf0, 0x2c, 0xa3, 0x48, 0xc5, 0x24, 0xe6,
				0x39, 0x26, 0x55, 0xba, 0x4d, 0x29, 0x60, 0x3c,
				0xd1, 0xa7, 0x34, 0x7d, 0x9d, 0x65, 0xcf, 0xe9,
				0x3c, 0xe1, 0xeb, 0xff, 0xdc, 0xa2, 0x26, 0x94,
			},
		},
	}

	for _, test := range tests {
		priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), test.key)

		_, err := btcec.ParsePubKey(
			pub.SerializeUncompressed(), btcec.S256())
		if err != nil {
			t.Errorf("%s privkey: %v", test.name, err)
			continue
		}

		hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
		sig, err := priv.Sign(hash)
		if err != nil {
			t.Errorf("%s could not sign: %v", test.name, err)
			continue
		}

		if !sig.Verify(hash, pub) {
			t.Errorf("%s could not verify: %v", test.name, err)
			continue
		}

		serializedKey := priv.Serialize()
		if !bytes.Equal(serializedKey, test.key) {
			t.Errorf("%s unexpected serialized bytes - got: %x, "+
				"want: %x", test.name, serializedKey, test.key)
		}
	}
}
Exemple #5
0
// This example demonstrates encrypting a message for a public key that is first
// parsed from raw bytes, then decrypting it using the corresponding private key.
func Example_encryptMessage() {
	// Decode the hex-encoded pubkey of the recipient.
	pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" +
		"359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" +
		"21010db67ac11b1b51b651953d2") // uncompressed pubkey
	if err != nil {
		fmt.Println(err)
		return
	}
	pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
	if err != nil {
		fmt.Println(err)
		return
	}

	// Encrypt a message decryptable by the private key corresponding to pubKey
	message := "test message"
	ciphertext, err := btcec.Encrypt(pubKey, []byte(message))
	if err != nil {
		fmt.Println(err)
		return
	}

	// Decode the hex-encoded private key.
	pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
		"5ea381e3ce20a2c086a2e388230811")
	if err != nil {
		fmt.Println(err)
		return
	}
	// note that we already have corresponding pubKey
	privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)

	// Try decrypting and verify if it's the same message.
	plaintext, err := btcec.Decrypt(privKey, ciphertext)
	if err != nil {
		fmt.Println(err)
		return
	}

	fmt.Println(string(plaintext))

	// Output:
	// test message
}
Exemple #6
0
// TestSigCacheAddExists tests the ability to add, and later check the
// existence of a signature triplet in the signature cache.
func TestSigCacheAddExists(t *testing.T) {
	sigCache := NewSigCache(200)

	// Generate a random sigCache entry triplet.
	msg1, sig1, key1, err := genRandomSig()
	if err != nil {
		t.Errorf("unable to generate random signature test data")
	}

	// Add the triplet to the signature cache.
	sigCache.Add(*msg1, sig1, key1)

	// The previously added triplet should now be found within the sigcache.
	sig1Copy, _ := btcec.ParseSignature(sig1.Serialize(), btcec.S256())
	key1Copy, _ := btcec.ParsePubKey(key1.SerializeCompressed(), btcec.S256())
	if !sigCache.Exists(*msg1, sig1Copy, key1Copy) {
		t.Errorf("previously added item not found in signature cache")
	}
}
Exemple #7
0
// This example demonstrates verifying a secp256k1 signature against a public
// key that is first parsed from raw bytes.  The signature is also parsed from
// raw bytes.
func Example_verifySignature() {
	// Decode hex-encoded serialized public key.
	pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" +
		"6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5")
	if err != nil {
		fmt.Println(err)
		return
	}
	pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
	if err != nil {
		fmt.Println(err)
		return
	}

	// Decode hex-encoded serialized signature.
	sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" +
		"8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" +
		"1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479")

	if err != nil {
		fmt.Println(err)
		return
	}
	signature, err := btcec.ParseSignature(sigBytes, btcec.S256())
	if err != nil {
		fmt.Println(err)
		return
	}

	// Verify the signature for the message using the public key.
	message := "test message"
	messageHash := wire.DoubleSha256([]byte(message))
	verified := signature.Verify(messageHash, pubKey)
	fmt.Println("Signature Verified?", verified)

	// Output:
	// Signature Verified? true
}